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ngineers at an aluminum-casting

company were pulling their hair out

trying to understand why a particu-

lar part came off the line filled with
inclusions. Like most engineers faced
with a challenge, they would change
one manufacturing variable at a time,
such as material temperature or the in-
jection rate of the liquid aluminum into
the die, but none seemed to reduce the
defect count below an acceptable
value. In desperation they turned to sta-
tistical software and a process called
design for experiments.

Having conducted so many trial-
and-error experiments, the engineers
had already collected sufficient data to
feed into the software. Findings indi-
cated an unexpected reaction between
the molten aluminum’s temperature
and the final-phase intensification pres-
sure. Optimizing on only these two fac-
tors let the engineers eventually reduce
the defect rate to zero.

TWo-LEVEL SIMPLICITY

The technology hero in this case is
not new; it has been around about 50
years. What’s relatively new is design-
of-experiments or DOE software that
quickly grinds through necessary cal-
culations to draw illuminating plots.
Engineers can make best use of the
technology in a simple form called a
two-level factorial design. Working
through a simple yet practical example
introduces potential users to the termi-
nology and general guidelines for using
the technology.

The real-world example for the soft-
ware’s usefulness comes from bearing
manufacturer SKF. Applying the tech-

nology to the interaction of compo-
nents in a roller bearing let its engineers
uncover a relationship that led to a
many-fold increase in operating life.
This and similar experiments saved the
company millions of dollars and helped
them fend off challenges in quality and
price from off-shore manufacturers.
The two-level factorial method in-
volves adjusting experimental factors
to only high and low levels. For in-

stance, if heat seems to be a factor in
the design or process, running experi-
ments at high and low temperatures
collects information to evaluate its ef-
fect. The two-level design approach of-
fers a parallel testing scheme that is
more powerful than one-factor-at-a-
time methods. By restricting tests to
two levels, users minimize the number
of experiments needed. The contrast
between levels provides the driving
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A test result called a response surface has been calculated by Design-Expert software
from Stat-Ease Corp. after digesting the results from sevemrs}rudured E

high point of the graph indicates that a particular dimension rafio in the bearing along
with o heat treatment produces a rugged design capable of an unexpectedly long life.
Without the scientific approach to testing that design of experiments provides, the bearing
engineers probably woufd not have found the right condifions.
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force to uncover the most
dominant effects.
Engineers might con-
struct two-level factorial
designs with the help of a
textbook. Of course they
will have to run carefully
constructed experiments.
But with a little back-
ground, software can
quickly grind through
most of the drudge work.
Users need only run ex-
periments or tests with as
little as one more than the
number of factors they
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want to test. For example,
one could test seven fac-
tors (heat, lubrication, di-
mensions, and so on) in
eight runs or tests, or 15
factors in 16 runs.

In the following exam-
ple, the bearing manufacturer used
two-level factorials to make a break-
through improvement in a standard
deep-groove bearing. The experi-
menters designed several variations of
the bearing to study osculation, heat
treatment of the inner ring, and cage
material — conditions the engineers
thought most affected bearing life.

Osculation is a ratio of the ball radius
to the outer-ring raceway radius. Tests
involved two levels of the ratio, one
high and one low. Heat treating was
also done in two levels, and the cages
were made of two materials: steel and a

Bearing osculation

Ball radius Bearing ball

Raceway radius

Osculation = Bearing

raceway

Osculation is the ratio of the ball radius to
race radius.

less-expensive polymer. All possible
combinations of these factors require
eight experiments (2° = 8). From the
eight runs one gets eight pieces of in-
formation — three main effects, three
two-factor interactions, one three-fac-
tor interaction, and the overall average.

The accompanying cube plot shows
results from tests in terms of bearing
life. Simply performing the tests may
uncover the right combination of con-
ditions. But when results are not dra-

The two-factorial design guide assists setting up screening studies with a color code. For example, white squares
indicate a full factorial problem. Green squares show a good design with high-resolufion fractional factorils. These
are the best choices because they are efficient. Yellow implies medium resolution; users should proceed with
caution because two-fuctor interactions are likely to be confused with other two-factor interactions. Red suggests
low-resolution fractions; main effects will be confused with two-factor inferactions.

layout for the bearing case is shown in
the table Breakdown of a design matrix.
Columns A, B, and C represent control
factors (osculation, heat treatment, and
cage material). These are laid out ac-
cording to a standard order that can be
obtained from any textbook or software
on design of experiments. Pluses indi-
cate high levels and minuses low lev-
els. Each column contains four pluses
and four minuses. The matrix offers an
important statistical property called or-

matic, significant effects
can be hidden by variabil-
ity in results. Or, users
might think a result is sig-
nificant when it’s really
just caused by normal
variation. For example,
statistical analysis re-
veals no significant dif-
ference between the 85-
hr life and the 128-hr life
in the tested bearings. In
fact, the high values at the
upper right edge indicate
a previously unknown in-
teraction between oscula- B—
tion and heat treatment.
This breakthrough was
not revealed by prior one-
factor-at-a-time experi-
mentation.

The specific design

Heat

The cube plot for a 2° factorial test shows where the fest
factors have the most effect.

Cube plot shows
two-level response

Osculation
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thogonality which
means factors are
not correlated.
That’s good.

If one just col-
lected happen-
stance data from
production records,
it is highly unlikely
one would get an
array of factors
shown in the table.
It would probably
show that factors
such as tempera-
ture and pressure
rise and fall to-

Breakdown of o design matrix

STANDARD LIFE LOG,
ORDER A B C AB AC BC ABC (HR) LIFE
1 -1 1 -1 +1 +1 +1 ~1 17 1.23
2 +1 ~1 ~ -1 -1 +1 +1 25 1.40
3 -1 +1 -1 ~1 +1 -1 +1 26 1.41
4 +1 +1 —1 +1 -1 -1 -1 85 1.93
5 ~1 -1 +1 +1 -1 -1 +1 19 1.28
6 +1 ~1 +1 -1 +1 -1 -1 21 1832
i -1 +1 +1 -1 -1 +1 -1 16 1.20
8 +1 +1 +1 +1 +1 +1 +1 128 2011
Effect (as is) 45250 43195 7SI AN S SR ] 75 QSR 4TS

Effect (log 10) 0.41 0.36 -0.015 0.30 0.66 -0.001 0.13

An experiment with three main factors involves eight runs (2° = 8). The design matrix presents o method of organiz-
ing the data and results from a two-level bearing test with three factors. In the example, A stands for osculation, B

gether. As factors
become more cor-
related, the error in

for heat treatment, and C for cage material. The plus refers to a high level factor and minus for low level.

estimation of their effects becomes
larger. That’s not good.

Orthogonal test matrices make effect
estimation neat and easy. For example,
the effect E of factor A is calculated by
simply averaging the responses at the
plus level and subtracting the average
at the minus level.

E= +Amcan _(_Amean)
or

E=[(25+85+21+128) -

(17 +26 +19 + 16)]/4
=45.25

The table also shows the response (in
this case the bearing life) varies by
nearly an order of magnitude from 16
to 128 hr. In situations with such con-
trast, statisticians routinely perform a
transformation of the response, most
commonly with a logarithm. One can
do the same on graph paper with log
scales to plot data in a straight line. The
log counteracts a common relationship:
the true standard deviation increases as
the true mean increases. In other words,
error is a constant percentage of the av-
erage response. This violates an impor-
tant statistical assumption, that the
variation is a constant. If one cannot
satisfy this assumption some statistics
may come out wrong, so consider
transforming the values with a common
mathematical function.

Let engineering knowledge be a
guide when selecting an appropriate
transformation. For example, chemists
might use the rule of thumb that says

reaction rates double for every 10° of
temperature increase.

When one cannot predict what a rela-
tionship should be, try log-log or square-
function paper. A better statistical fit for
the bearing-life data came from a log
transformation. The transformed re-
sponses appear in the last column of the
matrix. These figures were used to calcu-
late the effects listed in the bottom row.

After studying the design matrix, it
seems obvious that one should focus
on the largest effects and dismiss the
rest, right? Wrong. What if none of the

effects are real and testers just mea-
sured results from random error? The
vital few significant factors must be
screened out of many trivial ones that
occur by chance. One can do this easily
with a graph called the normal plot.
Textbooks provide details on how to
construct these graphs, but DOE soft-
ware can do it faster. Typically, users
see a group of near-zero effects that
form a line. After a noticeable gap one
may find effects much smaller or
larger than the others. Anything signif-
icant falls off to the bottom left or up-

Normal plot of effects  Plotiing the effecis
calculated from the
gol| A= osculation design matrix versus
B = heat treatment the normal percent
95/ C = cage material & | probability indicate
£ 90/ B which effects are
T 80 = most influential.
o 70
e 1 They appear away
= from the others to
% 205 the right. In this case,
= ‘123 5 drawing a line from
z c(he the left-most (least
influential) effects
1 highlights that oscu-
lation, heat, and
| , , 1 —1 their combination are
-002 009 020 030 041 mosteitical.
Effect
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Normal plot of residuals

per right of the line.
The figure Normal plot of

Residuals versus predicted

them for the bearing case with
the model fitted to original

effects shows those for the 21,5 o data. It does not look good be-
bearing tests. Significant ef- cause residuals increase
fects are labeled. The near- greatly when predicted values
zero effects fall on a straight increase.
line exhibiting normal scatter. 10.8 [ DOE textbooks can provide
These insignificant effects can @ = a bit more statistical advice on
be used to estimate experi- s a8 the subject. However, there is
mental error. To be conserva- 2 O g S no substitute for knowing
tive, consider replicating the & - your process. This should
design to get estimates of pure guide in selecting a transfor-
error. This is an actual mea- 108 mation. The illustration How
sure of error as opposed to as- a transformation helps shows
sumed error from pooling in- the residual plot after trans-
significant effects. forming the Y-coordinate data
Be sure to randomize the 2157 . by a log function. It looks
run order of the entire design. | [ I | 1 good because there is no par-
Do the same for replicate 18.00 4012 6225 84.38 106.50 ticular pattern other than a
runs. For example, write the Predicted normal scatter.

factors for each of eight sets
of conditions and three repeat
tests on separate sheets of pa-

Plotting residuals versus predicted results clumps values and masks
their possible influence.

Residual analysis also may
reveal individual outliers.
These are results that do not

per and place them in a con-

fit with the rest; they stand out

tainer. Pulling them out one
by one would describe a ran-
dom order that helps ensures
valid figures. Without random

How a transformation helps

Residuals versus predicted

or look different. But be care-
ful. Don’t delete points unless
you can assign a special cause
such as a broken fixture on a

testing, users leave them- 0.11H I test machine. Quite often an
selves open to lurking or 7] outlier turns out to be simply
background factors such as an error in data entry. People
gradual change in ambient 0.051 easily transpose digits.
temperature or machine wear.
TheI;e could confound factor © =] ’ ’NTERPRE"NG RESULTS
estimates. g With the foregoing infor-
With a valid estimate of ex- 2 0.00 mation, one can generate a re-
perimental error, standard sta- & a port. Start by making a plot of
tistical analyses can validate the | any significant main effects
overall outcome and individual —0.05 that are not part of a major in-
effects. A few texts provide teraction. For example, there
hand-calculation methods for = are none in the bearing case.
doing statistical analysis of -0.11H B The effects form a hierarchi-
two-level factorials, but it’s 7 T 7 | 7 cal family: A, B, AB. Thisis a
much easier to let statistical 1.25 1.45 1.64 1.83 202 fairly typical outcome.
software programs do the work. Predicted Next produce the interac-

An indicator of sufficient
capability in the software
would be a feature that per-
forms residual analysis.
Residuals are the difference

Transforming the axes in the illustration Normal plot of residuals
with o simple log function expands the values to reveal an even or
normal scatter, and therefore, no hidden effects.

tion plots. The effects AB tell
the entire story in this case.
The lines on this plot are not
parallel. This means the effect
of one factor depends on the

between actual and predicted response.
They represent the error in predictions.
Because of the variability of process
and test, one cannot be right-on in each
case. Just be sure that the residuals are
about normal. This gives credibility to
the statistics. Users can check the valid-

ity of their data by plotting residuals
versus predicted level. Watch for a pat-
tern of increasing variation sometimes
called a megaphone shape. It indicates
a violation of the statistical assumption
that variance is a constant. The illustra-
tion Normal plot of residuals shows

level of the other, so it would be inap-
propriate to display either of these main
factors by themselves. On the interac-
tion plot for the bearing case, for in-
stance, factor A (osculation) has a
greater impact when B (heat treatment)
is at the higher level. The chart indi-



_ Graph of interactions

cates that high A and high B most im-
prove bearing life. This is dramatized
by the illustration, Tell-tale response
surface.

Before making a final recommenda-
tion on new factor levels, perform con-
firmation runs. One can predict the out-
come with a simple equation that uses
the overall average modified up or
down depending on the level of each
factor. The model coefficients are sim-
ply the effects divided by two (the dif-
ference between +1 and —1). Statisti-
cians call this a coded equation because
they plug in values of +1 for high levels
and —1 for low. A midpoint setting is
entered as 0. The predictive model for
the bearing case is:

Log(L)=1.49+0.24

+0.18B + 0.1548
where L = bearing life, hr. and
A,B,and AB=+1 or-1.

Plugging in the recommended set-
tings in coded form gives the predicted
outcome:

Log(L)=1.49 + 0.2(+1)

+0.18(+1)+ 0.15(+1)
=202

The transformation must be reversed
to get the response back to the original
units of measure. For example:

Bearing life = 10> hr

=105 hr.

This compares well with observed
results. However, be prepared for some
variation when confirming tests. Soft-
ware should provide a confidence level
on the expected values. Use this data to
manage expectations. For instance,
clients think engineers can predict
events with certainty. Hedge on this by
predicting an expected range. This way
expectations will not be unrealistic.

The case study on bearing life illus-
trates how two-level factorials can be
applied to a machine-design process
with several variables. The bearing ex-
periments uncovered a large interaction
which led to a breakthrough production
improvement. What’s remarkable is
that even nonresults provided useful in-
formation. The experimenters found
the cage material has no effect. That
means it could be set at its most eco-
nomical level. Thus, significant sav-
ings also come from statistically insig-
nificant factors. [ ]

Residuals versus predicted
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Interaction of osculation with heat (Factor A with B)

The interaction graph provides another method of pinpointing
the most influential effects. The ¥ axis is a base 10 log of
bearing life. The X axis is simply low and high osculation, factor
A. Factor B is heat.

A closer look at sensitive factors

-1.00

After engineers have digested the results from the first series of tests they may wish to
fine-fune their results by pushing the osculation and heat ireaiments to higher levels.
Such further studies might produce the more complex response surface in which
maximums and minimums are less obvious but not less significant.
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