
1 

Response Surface Methods for Peak Process Performance 
Mark J. Anderson 

Stat-Ease, Inc. 

Executive summary 
This is the third article of a series on design of experiments (DOE). The first 

publication provided tools for process breakthroughs via two-level factorial designs.1 
The second article illustrated how to re-formulate rubbers or plastics using powerful 
statistical methods for mixture design and analysis.2 The authors now bring their focus 
back to process improvement and show how to hit the sweet spot of high yield of in-
specification products made at lowest possible cost. The key is in-depth DOE aimed at 
producing statistically-validated predictive models. Response maps made from these 
models point the way to pinnacles of process performance. 

Response surface methods (RSM) are powerful optimization tools in the arsenal 
of statistical design of experiments (DOE). Before employing RSM, process engineers 
should take full advantage of a far simpler tool for DOE -- two-level factorials, which can 
be very effective for screening the vital few factors (including interactions) from the 
trivial many that have no significant impact. See our first article for a case study on 
factorial design and, for more details, the book we wrote for non-statisticians.3 
Assuming the potential for further financial gain, follow up the screening studies by 
doing an in-depth investigation of the surviving factors via RSM. Then generate a 
“response surface” map and move the process to the optimum location. 

This article provides a brief on RSM with applications to plastics and rubber. For 
a complete primer, see our second book on DOE that details the more advanced tools 
for process optimization.4 

RSM at its most elementary level – one process factor 
To illustrate the elements of response surface methods, we present a very 

simple study that involves only one factor – cure temperature – and its effect on the 
ultimate shear strength of a rubber. The data are loosely derived from a problem 
presented in a standard textbook on RSM.5 Table 1 shows the experimental design in a 
convenient layout that sorts the “X” variable (input) by level. The actual run order for 
experiments like this should always be randomized to counteract any time-related 
effects due to ambient conditions, etc.  

This RSM design on one factor, generated with the aid of statistical software 
developed for this purpose,6 provides seven levels of temperature, with three of them 
replicated – the two extremes (#’s 1-2 and 11-12) – twice each, and the center point (5-
8) – four times over. This provides a total of 5 measures, or “degrees of freedom,” for 
“pure” error. Note that repeated measures or resampling from a given run will provide 
more stable averaged results, but only a complete re-run, for example – recharging a 
reactor, bringing it up to temperature and so forth, will suit for measuring overall 
process/sample/test variation. In general, the minimum requirement for an RSM design 
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is that each factor be tested at three levels over a continuous scale. Additional levels 
provide for a statistical test on lack of fit measured against the pure error obtained via 
replications of one or more design points. 

Table 1: One-factor RSM design on rubber-curing process 

 
 

# 

A:Cure 
Temp 

(Deg F) 

Ultimate 
Shear 
(PSI) 

1 280.0 711.2 
2 280.0 739.9 
3 286.0 847.9 
4 292.0 849.0 
5 297.5 806.9 
6 297.5 828.9 
7 297.5 776.0 
8 297.5 844.0 
9 303.0 663.5 

10 309.0 513.0 
11 315.0 218.9 
12 315.0 243.0 

There is no significant lack of fit in this case as one can infer by inspection of 
Figure 1 – the response surface for ultimate shear strength of rubber cured at varying 
temperatures. Imagine fitting a straight edge to this surface – it should be no surprise 
that statistics then show a significant lack of fit. 

 

Figure 1. Response surface of ultimate shear versus cure temperature 
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This curve was created from the following second-order polynomial model, 
called a “quadratic,” via least squares regression:  

Ŷ = 808.77 − 250.45 X − 328.58 X2 

This experiment design provides sufficient input levels to fit a third-order (cubic) term – 
X3. However, statistics show that it contributes insignificantly to the fitting of response 
data, thus there will be no advantage – only complication. When modeling data it is best 
to keep things as simple as possible by the principle of “parsimony.” 

The ‘hat’ over the response (output) variable “Y” indicates that this is a predicted 
value. The coefficients are based on coded values of X (the input variable) scaled from 
−1 to +1 over the range tested – 280 to 315 degrees F. Coded models, a standard 
practice for RSM, facilitate comparison of coefficients, which becomes more useful with 
multiple factors, as will be seen in the next example. It pays immediate dividends for 
predicting the ultimate shear strength at the center point value for cure temperature of 
297.5 degrees F: Simply plug in zero for X, which leaves the model intercept of 808.77 as 
the expected outcome. 

Of much greater interest for predictive purposes is the location of the maximum 
shear strength. For a single response measure the polynomial model lends itself to 
simple calculus. However, numerical search algorithms, such as simplex hill-climbing, 
work better in general and they can be done quickly with the aid of computers. In this 
case, the cure temperature is found at 290.8 degrees F (-0.381 coded) at which an 
ultimate shear strength of 856.5 psi is predicted with a 95% interval of 799.05 to 913.94 
psi – individual results will vary within this range. 

This simple example provides the basics of response surface methodology, but 
the big payoff comes with multiple factors tested on processes with multiple responses 
that all must meet predetermined specifications. The next case provides illustration. 

Discovering the sweet spot for multiple responses 
Success in production of polymeric high-aspect-ratio microstructures (HARMs) 

depends greatly on the adhesion force between the master mold and the silicone 
rubber during the demolding process. To study this, process engineers7 performed a 17-
run, “Box-Behnken” design (BBD) on three critical process factors known to affect their 
results. The BBD is a popular template for RSM because it requires only three-levels of 
each process factor and only a fraction of all the possible combinations. Details on the 
BBD can be found in references 4 and 5. Figure 2 shows the BBD structure for three 
factors, in this case: 

A. Coil power, 100-300 watts 
B. Passivating time, 10-600 seconds 
C. Passivation gas flow, 10-120 standard cubic centimeters per minute 

(sccm). 
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Figure 2. Box-Behnken design on three factors 

The experimental matrix and results on adhesion and relative cost (discussed 
below) are shown in Table 2. As symbolized in Figure 2, the BBD template calls for 
replication of the center point a number of times, ideally five as shown for this case – 
the last ones in standard order (“Std”) listed in the table. The actual run order was done 
at random – an essential element of experimentation done to establish cause-and-effect 
relationships. 

Table 2: Design matrix for RSM on silicone rubber molding process 

Std Run A: 
Coil 

power 
(W) 

B: 
Pass. 
time 
(Sec) 

C: 
Gas flow
(Sccm) 

Peel 
force 
(N) 

Cost 
(Rel.) 

1 9 100 10 65 4.95 7.5 
2 1 300 10 65 6.82 9.5 
3 7 100 600 65 3.58 66.5 
4 3 300 600 65 4.95 186.5 
5 16 100 305 10 3.98 31.5 
6 6 300 305 10 6.02 92.5 
7 17 100 305 120 3.98 42.5 
8 10 300 305 120 4.77 103.5 
9 2 200 10 10 4.07 3 

10 5 200 600 10 2.62 121 
11 13 200 10 120 3.27 14 
12 4 200 600 120 2.92 132 
13 8 200 305 65 2.98 67.5 
14 11 200 305 65 3.42 67.5 
15 12 200 305 65 2.82 67.5 
16 14 200 305 65 3.41 67.5 
17 15 200 305 65 3.02 67.5 
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Model-fitting done by RSM software revealed that the quadratic contour and 3D 
response surfaces in Figures 4 a and b; respectively, provide an adequate picture of the 
predicted peel force as a function of power and time (gas flow set low for minimization 
of this response). The flag locates the optimal setting of 172 watts coil power at 600 
seconds of passivation at 10 sccm gas flow, which produces a predicted peel force of 2.4 
newtons (N).  

 

Figure 4a,b. Contour and 3D response surface plots of peel force (gas flow set low) 

However, what if a higher peel force, say as high as 3.5 N, would be acceptable? 
Perhaps another set of conditions might then be more economical in terms of power in 
watt-seconds and at a lower rate of gas consumption. Programming this in as a second 
response (relative cost) paves the way to seeing a ‘sweet spot’ (Figure 5) enabled by 
increasing the gas flow to maximum level, thus allowing an acceptably low peel force of 
3.3 at minimal passivation time (10 seconds) and only a slight increase in coil power 
(182.7 watts). 

 
Figure 5. Sweet spot where both peel force and cost are minimized 
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Conclusion 
Response surface methods (RSM) have been shown to be effective for achieving 

peak performance in processing of products made from rubber and plastics. By making 
use of this powerful statistical tool for design of experiments (DOE), you will likely 
discover a winning factor combination – one that achieves the greatest profits for your 
enterprise. 
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