Formulation Simplified:
Finding the Sweet Spot via Design and Analysis of Experiments with Mixtures

Making the most of this learning opportunity. Stat-Ease worldwide webinars attract many attendees, so, to prevent audio disruptions, all must be muted by the presenter. Also, to avoid interruptions and keep the presentation to about one hour, please hold all questions until afterwards and address them to stathelp@statease.com.

P.S. Find slides posted now at www.statease.com/webinar.html and, barring technical issues, a recording put up afterwards.

–Mark

By Mark J. Anderson, PE, CQE
Stat-Ease, Inc., Minneapolis, MN
mark@statease.com

Reference: Formulation Simplified

Now in 3rd edition.*
1st edition 2018!

* Productivity Press CRC, Taylor & Francis
New York, June 2015.

A Primer on Mixture Design: What’s In It for Formulators?
www.statease.com/pubs/MIXprimer.pdf
The WIIFM for this Webinar

- Introduce tools for multi-component product development and optimization.
- Brief formulators on tailored tools that hone in on optimal recipes.
- Via real-world examples, lay out experiment-designs and models for mixtures that ultimately lead to the “sweet spot” —a formulation meeting all product specifications.

See how Stat-Ease makes formulation optimization easy for its users!

Please press the raise hand now if you are with me.

Mixture Design*

(Pioneered by Henry Scheffé, U Cal., 1957)

Considerations:

- Factors are ingredients of a mixture.
- The response is a function of proportions, not amounts.
- Given these two conditions, fixing the total (an equality constraint) facilitates modeling of the response as a function of component proportions.

Let’s try forcing a factorial design onto a mixture.
Forcing (squeezing?) factorial design on a mixture: Lemonade

Mixture Design and Modeling (sweet!)
Two components: Quadratic (synergistic)

\[\hat{Y} = \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 \quad \beta_{12} > 0 \]

Lemons plus water taste better than either one alone.
Three-Component Mixture

Factorial

Mixture

Ternary Diagram for Mixture Composition
(for example, stainless steel flatware)

\[x_1 + x_2 + x_3 = 1 \]
Mixture Case Study

Three detergent components are varied:

- 3% ≤ A (water) ≤ 5%
- 2% ≤ B (alcohol) ≤ 4%
- 2% ≤ C (urea) ≤ 4%

The sum of the three active components always equals 9% of the final formulation (all other components held constant at 91%).

A + B + C = 9%

Detergent mix
Using v11 Rebuild,* Run, Analyze
(With Water at 8% high)

Formulation Simplified
In Example 4.5 (p. 140-141), Cornell details an experiment on a tropical beverage formulated from juices of:

A. Watermelon
B. Orange
C. Pineapple
D. Grapefruit

The formulators decided to restrict watermelon to 80% at most, but they wanted mixtures in this region because this juice is so much cheaper than the others.

This complex constraint forms a frustrum of the simplex tetrahedron (top cut off).

*Apple added as 5th component
Slice 3D on pineapple & grapefruit

Figure 4.4. Average flavor scores at the 16 juice blends.
Categorical Factors Combined

In this study a paint chemist working for an automobile manufacturer was tasked to choose:

- Monomer vendor M1 or M2.
- Crosslinker type CL1, CL2 or CL3.
- The optimal mix of
 - A. Monomer, 5 - 20 %
 - B. Crosslinker, 25 - 40 %
 - C. Resin, 55 - 70 %

With these goals for two key response measures:

2. Solids content > 50%.

Categorical Factors Combined: Split Plot

In this study a paint chemist working for an automobile manufacturer was tasked to choose:

- Monomer vendor M1 or M2. <=Hard to Change!
- Crosslinker type CL1, CL2 or CL3.
- The optimal mix of
 - A. Monomer, 5 - 20 %
 - B. Crosslinker, 25 - 40 %
 - C. Resin, 55 - 70 %

With these goals for two key response measures:

2. Solids content > 50%.
The WIIFM for this Webinar

- Introduce tools for multi-component product development and optimization.
- Brief formulators on tailored tools that hone in on optimal recipes.
- Via real-world examples, lay out experiment-designs and models for mixtures that ultimately lead to the “sweet spot”—a formulation meeting all product specifications.

See how Stat-Ease makes formulation optimization easy for its users!

Now you know.

Stat-Ease Training: Sharpen Up via Computer-Intensive Workshops

[Shari Kraber, Workshop Manager & Master Statistician](mailto:shari@statease.com)

- **Factorial Split-Plot Designs**
 - Stat-Ease Academy
- **Response Surface Methods for Process Optimization**
- **Modern DOE for Process Optimization**
- **Experiment Design Made Easy**
- **PreDOE Web-Based (optional)**
 - Stat-Ease Academy
- **Basic Statistics for Design of Experiments**
- **Mixture and Combined Designs for Optimal Formulations**
- **Robust Design and Tolerance Analysis**
- **Designed Experiments for Pharma, Life Sciences, Assay Optimization, Food Science**
- **Plus more classes here!**

www.statease.com/training/stat-ease-academy.html
“Chemistry is necessarily an experimental science: its conclusions are drawn from data, and its principles supported by evidence from facts.”

- Michael Faraday

Best of luck for your experimenting!
Thanks for listening!

-- Mark

mark@statease.com