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Introduction

• In today’s Industry 4.0, industrial processes are increasing in
complexity, presenting significant challenges to the industrial
experimenter

• Many experimental design and analysis challenges today stem from
data that are non-normal and/or correlated
• Non-normal and correlated experimental data is quite common in

modern industry, and is often analyzed in practice by either:
1 Use a classical design and (if needed) apply a data transformation to

the response, i.e., transform to normality, then proceed with an analysis
of the transformed response using well-known normal theory models, or

2 Design and analyze the experiment under the framework of the
generalized linear model (GLM)
• Should involve optimal design for non-linear models
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Data Transformations to Normality?

Advantages

• Data transformations are practitioner friendly and easy to implement

• Computationally inexpensive

• Assuming the data transformation is adequate, well-known classical
designs such as 2-level factorials and their fractions are still “good”
designs for analyzing the transformed response.

• Use of data transformations permits one to use well-known normal
theory-based model fitting and inference methods with the
transformed response, to include small-sample inference.

• Use of well-known model selection and model diagnostics strategies
can be used with the transformed response
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Data Transformations to Normality?

Disadvantages
• No guarantee that a single transformation will simultaneously induce

all three of the desirable properties of normality, constant variance,
and linearity
• Easy to see if one considers analysis of discrete data where errors are,

e.g., Poisson:
•
√
Y approximately stabilizes variance

• Y 2/3 does better for approximating normality
• loge(Y ) produces additivity of the systematic effects

• Transformation may not be defined at the boundaries of the sample
space

• At times a transformation can result in nonsensical values, e.g., see
Meyers and Montgomery (1997).
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Data Transformations to Normality?

If final model is used for prediction purposes:

• Predicted values in original units are subject to retransformation bias

** Easy to see if one considers Jensen’s inequality, i.e., E [h(Z)] ≥ h(E [Z ]), where Z
is a random variable and h(·) is a convex function

Example (Square-Root Transformation)

• Suppose
√
Y = Z ∼ N(µ, σ2) denotes a transformation from the original units Y to the

transformed units Z , so that Y = h(Z) = Z2, then

E [Y ] = E [h(Z)] = E [Z2] = µ2 + σ2 > h(E [Z ]) = h(µ) = µ2

• Retransformation bias is then given by

E [Y ]− h(E [Z ]) = Var [Z ] = σ2

• This problem and solutions are discussed in Neyman and Scott (1960), Land (1974),
Miller (1984), Montgomery and Peck (1992), Perry and Walker (2015), Perry (2018a),
and Perry (2018b)
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Generalized Linear Model (GLM)

Advantages

• GLMs represent a transformation on the population mean, not the
data ⇒ response variable does not change

• Naturally resolves the issues outlined above posed by data
transformations

• GLMs permit significantly more modeling flexibility by allowing a
separate modeling of linearity and variance relationships

• Added flexibility allows the analyst to focus more on selecting an
appropriate model as opposed to finding manipulations to make the
data fit a restricted class of models

• Extensions of GLMs to GEEs and GLMMs allow for correlated
observations
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Generalized Linear Model (GLM)

Disadvantages
• Determining which design points to run is much more complicated

under the GLM framework due to the design dependence problem,
e.g., see Khuri et al. (2006) and Woods et al. (2017) ⇒ Classical
designs are not generally the “best” designs
• Significant amount of work in optimal design for nonlinear models,

particularly for Binomial, Poisson and Gamma models
• Work in optimal design under the GLM framework when the

experiment involves randomization restrictions is less known, one
exception is Atkinson and Woods (2015).

• Model fitting/testing/diagnostics generally becomes more challenging,
particularly in the case where observations are correlated

• Statistical inference relies on asymptotic results ⇒ problematic for
model editing when experimental runs are expensive or time
consuming
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Data Transformation or GLM - Which to use?

• Unless the response is binary or low-level counts, I highly recommend
the use of data transformations.
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Electron Microscopy Experiments
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Electron Microscopy Experiments

• Electron microscopy experiments analyzed in Perry et al. (2015)

• Machining of copper bars
• Experimental factors include two machining parameters

1 Rake angle (factor A)
2 Cutting speed (factor B)

• Response: Grain Size

• Goal of experiments: Build model to predict material properties from
the distribution of the nano-grains on the machined surface

Sampling Process

 

Figure 10: (a) Grain size distribution and (b) grain boundary misorientation distribution for 
samples obtained by HRSPD. Figures (c) and (d) are those for the SPD Cu respectively. 
Solid lines indicate the trend-line for actual grain size distribution and the dashed line 
indicates the interpolated trend-line for plausible grain size distributions for the additional 
modes that are yet indeterminate due to insufficient data. 
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Electron Microscopy Experiments - Nonstandard
Experimental Data

1 For any given bar stock, the sampled grain sizes are NOT a simple
random sample ⇒ randomization restrictions!
• 2-stage sampling process ⇒ nested error structure

i. Random sampling at bar-stock level
ii. Random sampling at chip level

2 Grain size is not normally distributed

Sampling Process

 

Figure 10: (a) Grain size distribution and (b) grain boundary misorientation distribution for 
samples obtained by HRSPD. Figures (c) and (d) are those for the SPD Cu respectively. 
Solid lines indicate the trend-line for actual grain size distribution and the dashed line 
indicates the interpolated trend-line for plausible grain size distributions for the additional 
modes that are yet indeterminate due to insufficient data. 

 

M.B. Perry (Univ of Alabama) Experiences in Modern Experimentation 11 / 31



Electron Microscopy Experiments - Experimental Design

• Materials scientists chose to run two replicates of a 22 factorial design
• Total of 8 experimental runs (or 8 bar-stock)

• For the i th experimental run (i = 1, 2, ..., 8):
1 Only one chip was randomly selected from the available population of

chips
2 A vector of grain size observations of length ni was recorded from the

corresponding machined chip’s surface
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Electron Microscopy Experimental Data

Normal Probability Plots of Grain Size
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Alternatives for retrospective analysis of experimental data

Alternatives for retrospective analysis of the microscopy experimental data:

1 Standard ordinary least squares (OLS) analysis on 8-point
averages
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Electron Microscopy Data - Analysis of 8-Point Averages

• Let Ȳ=average grain size; A=Rake Angle; B=Cutting Speed

• Postulated model: Ȳi = θ0 + θ1A + θ2B + θ12AB + εi
• ε′i s ∼ iid N(0, σ2)

* Similar model can be fit using 2 loge S as response to identify
significant dispersion effects

OLS Analyses

Design Analysis
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Alternatives for retrospective analysis of experimental data

Alternatives for retrospective analysis of the microscopy experimental data:

1 Standard ordinary least squares (OLS) analysis on 8-point averages

2 Data transformation to normality, then perform analysis on
transformed response using the linear mixed model (LMM)
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Analysis of Transformed Data using LMM

• Consider the Box-Cox transformations

Y (λ) =

{
Y λ−1
λ λ 6= 0

loge(Y ) λ = 0

where Y is the original response variable, λ is the transformation
parameter, and Y (λ) is the transformed response variable.

• Postulated model:

yij(λ) = β0 + β1A + β2B + β12AB + δi + εij

for i = 1, ..., 8 and j = 1, ..., 64

• Also, β0, β1, β2, and β12 denote the fixed-effect model components
and δi ∼ N(0, σ2δ ) and εij ∼ N(0, σ2ε ), where Cov(δi , εij) = 0 for all i
and j , denote the random model components.
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Analysis of Transformed Data using LMM
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NASCAR Wind Tunnel Experiments
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NASCAR Wind Tunnel Experiments
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NASCAR Wind Tunnel Experiments
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NASCAR Wind Tunnel Experiments

• Resulting design is a split-plot design with 8 whole plots and 4
subplots per whole plot.

• Let’s design and analyze the experiments in Design Expert.
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NASCAR Wind Tunnel Experiments - Analysis
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Consequences of analyzing SPD as a CRD?

• If variability between whole plots exists, the standard errors of the
factor effects are incorrect when analyzing a SPD as a CRD.
• Inactive whole plot effects can be falsely deemed as active
• Active subplot effects can be falsely deemed as inactive
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Consequences of analyzing SPD as a CRD?

• Consider a 24 split-plot design with 2 HTC and 2 ETC factors.

• Simulated 3 replicates ⇒ 12 whole-plots and 48 subplots

• Variance components: σ2δ = 3.0 and σ2ε = 1.5
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Consequences of analyzing SPD as a CRD?
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Consequences of analyzing SPD as a CRD?

• Bottom line: If between whole-plot variability exists, i.e., σ2δ > 0, then
analyzing a split-plot design as a completely randomized design results
in use of incorrect standard errors for computing the test statistics.
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Final Remarks

• Often times experiments are too difficult or expensive to run in a
completely randomized fashion, leading to a split-plot treatment
structure.
• Designs executed with randomization restrictions often require

nonstandard analyses techniques.
• If one ignores the correlation between observations due to the spit-plot

nature of the design, one can easily be misled as to which factor effects
may or may not be active.

• Fortunately, Design Expert has the capabilities to design and analyze
split-plot designs, and integrates the use of data transformations
throughout the SPD analysis phase.
• Very practitioner-friendly!
• Industry 4.0 readiness!
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Thanks for Listening!
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