

Selecting a Most Useful Predictive Model

Mark J. Anderson, PE, CQE, MBA
Engineering Consultant
Stat-Ease, Inc., Minneapolis, MN
mark@statease.com

1

Maximizing this educational opportunity

Welcome everyone! To make the most from this webinar:

- Attendees on mute
- Chat addressed afterward
- Send further questions to <u>mark@statease.com</u>

PS Presentation posted to www.statease.com/webinars/

Please press the raise-hand button if you are with me.

Selecting a Most Useful Predictive Model

2

This Webinar: What's In It for You

- ➤ How to achieve a statistically solid predictive model from experimental results, particularly from response surface designs on process factors (main focus) and/or mixture components
- Tips on deploying algorithmic model reduction to glean a most 'parsimonious' (i.e., simple) equation that produces a useful maps of future performance
- Insights on key statistics for assessing your model fit
- Briefing on top three diagnostics of normality, outlier identification and possible advantage by a transformation

Selecting a Most Useful Predictive Model

3

3

RSM: Process Flowchart Subject Matter Knowledge (Plus, Factorial Screening) Vital Few Factors (x's) Process Measured Response(s) (y(s)) Fitting* Polynomial Model Response Surface "All models are wrong, but some are useful." - George Box Selecting a Most Useful Predictive Model

RSM Case Study (Program Tutorial)

A chemist studied three process factors:

Stat Ease. 360

- DESIGN EXPERT

- A. Time (minutes)
- B. Temperature (degrees C)
- C. Catalyst (percent)

To optimize two key responses:

- 1. Conversion (%) => Maximize (80% or better)
- 2. Activity => Target 63 (± 3 allowable)

For convenience, the experiment is run in two blocks via a "central composite design" (CCD):

- 1. Two-level factorial with center points.
- 2. Axial runs (star points*) plus more center points. *Will show this in RSM tutorial picture of CCD.

Rebuild—Show CCD layout

Selecting a Most Useful Predictive Model

5

5

Algorithmic Model Reduction Criterion and Selection Methods

Stat-Ease software options (default in bold):

Criterion	Selection method
AICc	Forward, Backward
BIC	Forward, Backward
p-value	Forward, Backward, Stepwise
Adj R-Squared	All Hierarchical

See detail on criterion in notes below or refer to the *Handbook for Experimenters*. For nearly orthogonal designs such as regular CCDs, all approaches work well. To guard against high collinearity, go backward with AICc. (Consider also the more traditional p-value backward selection.) If the models agree, then you're done. Otherwise, go with the one that produces the best fit statistics, keeping in mind that:

All model reduction must be guided by subject matter knowledge!

Selecting a Most Useful Predictive Model

6

Final Tips for Good Modeling

- ➤ Always try reducing the 'design-for' model, if need-be overriding the one chosen by the software based on the best combination of sequential p-values, lack-of-fit results and fit statistics—adjusted and predicted R² (mind any gap > 0.2!). It's worth a try, particularly for big models where many insignificant terms can mask one that would be worth including.
- Avoid "paralysis by analysis"—it may be better to press ahead, imperfections, e.g., LOF—presuming you have tried everything!). You be the judge: <u>Is the model useful</u>?
- ➤ Get a 2nd opinion from the Stat-Ease Consulting Team. Show us the data! Email your SE software file to stathelp@statease.com with some background information on what you hope to accomplish.

Selecting a Most Useful Predictive Model

7

7

This Webinar: What's In It for You

- ➤ How to achieve a statistically solid predictive model from experimental results, particularly from response surface designs on process factors (main focus) and/or mixture components
- ➤ Tips on deploying algorithmic model reduction to glean a most 'parsimonious' (i.e., simple) equation that produces a useful maps of future performance
- Insights on key statistics for assessing your model fit
- Briefing on top three diagnostics of normality, outlier identification and possible advantage by a transformation

Mission accomplished?

Selecting a Most Useful Predictive Model

8

References

*Anderson, et al, Taylor & Francis, Productivity Press, New York, NY.

Selecting a Most Useful Predictive Model

9

9

Stat-Ease Training: Sharpen Up Your DOE Skills

- Mixture Design for Optimal Formulations (public or private)
- □ Designed Experiments for Specific Industries (private only)

Individuals	Teams (6+ people)
Improve your DOE skills	Choose your own date & time
Ideal for novice to advanced	Customize via select case studies

Learn more & then register:

www.statease.com

Contact:

workshops@statease.com

Selecting a Most Useful Predictive Model

10

