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Executive summary 
Powerful interactions affect the performance of many rubber and plastics processes.  
Unfortunately, these critical effects cannot be revealed by the traditional scientific 
method, which dictates changing one factor at a time (OFAT).  This case study 
provides inspiration to overcome the limitations of OFAT via a very simple design of 
experiment (DOE) called a two-level factorial.1  By employing a multifactor 
approach the technical staff at a custom rubber molder uncovered a combination of 
material selection and manufacturing protocol that created unacceptable results.  
Armed with this process knowledge, they achieved a breakthrough quality 
improvement. 
Robinson Rubber Products Company, a Minnesota-based custom molder, designs 
and manufactures components for original equipment manufacturers.  They 
specialize in complex parts such as one involving an inner and outer steel sleeve 
with molded rubber bonded in between.  This particular component had to meet 
very tough requirements for an automotive application, thus it experienced an 
intermittent scrap rate of up to 10%.  The most common problem was that the part 
did not pass the company’s tough metal-to-rubber bonding test, which requires that 
the rubber tears apart rather than pulling away from the metal. 
Over the years, Robinson made many one-factor-at-a-time (OFAT) changes to the 
process but the problem continued to reoccur.  Finally their Quality Assurance (QA) 
Manager, John Engler, performed a statistically-designed, multifactor experiment 
that modeled the effects of five key manufacturing variables.  This led to 
significantly better settings that optimized the rubber-to-metal bond, resulting in 
scrap rates that consistently fell below 1%, with no recurrence of bond problems. 

Tough rubber-to-metal bonding problem 
The problematic part, similar to that pictured in Figure 1, uses two coats of a 
bonding agent applied to each of the metal inserts.  The inserts are hand-loaded into 
a 16-cavity mold, the rubber is injected, and the parts dwell in the mold for a 
specified time, temperature and pressure.  To verify the bonding, operators 
periodically perform a destructive test on product by pushing the inner steel insert 
out of an assembly and visually checking the rubber-to-metal bond. 



 
Figure 1: Problematic rubber-to-metal bonding (after destructive peel-back) 

Robinson periodically experienced a large number of rejects because of bond failure.  
Engineers and operators expressed differing opinions on the problem – achieving a 
consensus was nearly impossible due to so many variables and potential 
interactions.  The injection speed, injection pressure, vulcanizing temperature, and 
dwell time of the injection molding machine can easily be adjusted.  The thickness of 
the bonding agent and amount of time it is allowed to dry are other important 
variables.  “Process changes would be made on the fly until the problem went away,” 
Engler said.  “Then after a period of time the problem would reappear and the trial 
and error process would start all over.  When this happened three times in only two 
weeks, we knew that we needed to find a new method to find the root cause of the 
problem.” 
A major problem with the OFAT method is that it cannot detect the interactions of 
multiple factors.  By varying an individual variable you can find the optimal value of 
each one with all the others held constant.  However, when you combine the 
supposedly-optimized values of each variable the results are usually far less than 
optimal, often because of the ways that they interact with each other. 

Design of experiments uncovers interaction of variables 
“My past experience with similar problems suggested to me that the only way to 
really understand what was happening was to perform a designed experiment to 
find the critical factors that are required to achieve a robust rubber-to-metal bond,” 
Engler said.  “DOE provides a better approach that varies the values of all variables 
in parallel so it uncovers not just the main effects of each variable but also the 
interactions between the variables.  This approach makes it possible to identify the 
optimal values for all variables in combination and also requires far fewer 
experimental runs than the OFAT approach.” 

Experimental designs are available with as little as k+1 runs where k equals the 
number of variables to be tested, for example: 7 factors in 8 runs.  But more accurate 
results can be achieved by higher resolution designs which are capable of evaluating 
the main effects of each variable as well as the two-factor interactions.1,2  For 
example, 16 runs suffice for a high-resolution design on 5 factors – only half of the 
32 combinations of all these factors at two levels each. 

After a brief training session on DOE, the Robinson Rubber technical staff worked 
together to select the factors that they thought were the most likely to cause the 
bond problems.  Engler was chosen to coordinate and monitor each step of the 
experiment. 



Experimental design 
The five factors that were selected were: 

A. Vulcanizing temperature (low versus high), 
B. Bond material (two types), 
C. Bond application thickness (one vs two coats), 
D. Injection pressure (low vs high), 
E. Bond settling time (low vs high). 

With this information entered, a specialized DOE program3 generated an ideal two-
level design with 16 runs – a high-resolution half fraction of all possible 
combinations.  Table 1 provides the test matrix – a standard template that works for 
any 5 factors at two levels each. 

Table 1: Two-level factorial test matrix (half-fraction) 
Std 

Order 
A: 

Cure 
Temp 
deg F 

B: 
Bond 

Material 

C: 
Bond 
Coats 

D: 
Inject 

Pressure 
psi 

E: 
Settling 

time 
minutes 

1 295 A 1 1000 120 
2 325 A 1 1000 1 
3 295 B 1 1000 1 
4 325 B 1 1000 120 
5 295 A 2 1000 1 
6 325 A 2 1000 120 
7 295 B 2 1000 120 
8 325 B 2 1000 1 
9 295 A 1 3000 1 

10 325 A 1 3000 120 
11 295 B 1 3000 120 
12 325 B 1 3000 1 
13 295 A 2 3000 120 
14 325 A 2 3000 1 
15 295 B 2 3000 1 
16 325 B 2 3000 120 

Robinson ran the experiment on the first shift over two days.  The design blocked 
out the day-by-day impact.  It included an additional six cures at the beginning, 
middle and end of each day with the same conditions to serve as controls to detect 
the effect of any variables besides those that were being measured in the 
experiment.  The order of the cures was randomized as insurance against lurking 
variables such as machine wear.  Slight modifications by Engler were introduced to 
simplify the temperature changes.  Every cure was monitored in person by Engler to 
ensure that all the factors were correct for each cure. 
The primary measures of performance were: 



1. Bond – the amount of rubber bond coverage remaining on the steel sleeve 
measured on a scale of 1 to 10 with 1 being almost no bond and 10 being 
90% to 100% bond remaining.  A rating of 8 or better was considered to be 
an acceptable bond in accordance with the drawing specification. 

2. Cure – the completeness of the cure was rated on a 1 to 5 scale with 1 being a 
very low state of cure and 5 being completely cured.  A rating of 3 or better 
was considered acceptable. 

Optimizing the values of each variable 
Engler and his QA technician Tom Somers rated the parts together.  They then 
calculated the fraction defect for bond and cure and entered this data into the 
software, which then generated reports that identified the significant factors for 
these two critical responses.  The results showed that within the tested ranges 
neither the bond settling nor the injection pressure created any appreciable effect 
on performance of the part.  That eliminated two suspected variables.  However, 
higher temperature, factor A, provided a significant improvement – it created a main 
effect on cure failure.  This is graphically illustrated by an ordered bar chart (see 
Figure 2), commonly known as a “Pareto” – an Italian economist who observed that 
a vital few individuals, say 20 percent, typically account for the bulk of the response, 
over 80 percent. 

 
Figure 2: Pareto chart for effects on cure 
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Note that for statistical purposes this particular chart displays the t-value of the 
effect and features a threshold bar for significance at 95 percent confidence. 

But what proved most interesting is the significant interaction of bonding agent 
with coating thickness illustrated in Figure 3.  This plot provides statistical 
measuring sticks know as least significant difference (LSD) bars that are set for 
making comparisons with 95 percent confidence.  The LSDs overlap at two coats of 
either bond agent, thus providing a robust operating condition if both materials 
must be used for purchasing leverage.  However, if only one coat could be afforded, 
then only the B2 bonding agent would work reliably.  The separation of the LSD bars 
at the left side of the interaction plot shows a significant increase in bond failure 
with only one coat of B1. 

 
Figure 3: Interaction of bond agent with thickness of coating 

Another way of spinning this story is that only the B2 bonding agent worked well 
either thin or thick (1 vs 2 coats; respectively).  This would be important if 
operators varied in how much bond they applied per coat. 

Results 
Robinson Rubber began consistently producing the part under using this robust 
bonding agent at high temperature.  The scrap rate immediately dropped to well 
below 1% and remained at that low level throughout subsequent production runs.  
“Design of experiments is clearly a useful tool that can help determine the root cause 
of and solution for difficult problems that might fester for years otherwise,” QA 
Manager Engler concluded. 
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