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Response Surface Methods (RSM) for Peak Process 
Performance at the Most Robust Operating Conditions 

Mark J. Anderson (mark@statease.com) and Patrick J. Whitcomb 

Summary 
Response surface methods (RSM) provide superb statistical tools for design and 

analysis of experiments aimed at process optimization. At the final stages of process 
development, RSM illuminates the sweet spot where high yield of in-specification 
products can be achieved at lowest possible cost. It produces statistically-validated 
predictive models and, with the aid of specialized software, response surface maps that 
point the way to pinnacles of process performance. 

This article starts with the basics on RSM before introducing two enhancements 
that focus on robust operating conditions: 

• Modeling the process variance as a function of the input factors 
• Propagation of error (POE) transmitted from input factor variation. 

Putting all these tools together, the process engineer can find the find the flats – high 
plateaus for maximum yield and broad valleys that minimize defects. 

Response Surface Methods 
Response surface methods (RSM) are powerful optimization tools in the arsenal 

of statistical design of experiments (DOE). Before employing RSM, process engineers 
should take full advantage of a far simpler tool for DOE – two-level factorials, which can 
be very effective for screening the vital few factors (including interactions) from the 
trivial many that have no significant impact. (For details, see DOE Simplified.1) Assuming 
the potential for further financial gain, it’s best to follow up screening studies by doing 
an in-depth investigation of the surviving factors via RSM. Then generate a response 
surface map and move the process to the optimum location. 

This article provides a brief introduction to RSM. For a complete primer, read 
RSM Simplified.2 

RSM at its most elementary level – one process factor 
To illustrate the elements of response surface methods, we present a very 

simple study that involves only one factor – cure temperature – and its effect on the 
ultimate shear strength of a polymer. The data are loosely derived from a problem 
presented in a standard textbook on RSM.3 Table 1 shows the experimental design in a 
convenient layout that sorts the “X” variable (input) by level. The actual run order for 
experiments like this should always be randomized to counteract any time-related 
effects due to ambient conditions, etc. 
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This RSM design on one factor, generated with the aid of statistical software 
developed for this purpose,4 provides seven levels of temperature, with three of them 
replicated – the two extremes (#’s 1-2 and 11-12) – twice each, and the center point (5-
8) – four times over. This provides a total of 5 measures, or degrees of freedom, for pure 
error. Note that repeated measures or re-sampling from a given run will provide more 
stable averaged results, but only a complete re-run, for example – recharging a vessel, 
bringing it up to temperature and so forth, will suit for measuring overall 
process/sample/test variation. In general, the minimum requirement for an RSM design 
is that each factor be tested at three levels over a continuous scale. Additional levels 
provide for a statistical test on lack of fit measured against the pure error obtained via 
replications of one or more design points. 

Table 1: One-factor RSM design on a curing process 
 
 

# 

A:Cure 
Temp 

(deg F) 

Ultimate 
Shear 
(psi) 

1 280.0 711.2 
2 280.0 739.9 
3 286.0 847.9 
4 292.0 849.0 
5 297.5 806.9 
6 297.5 828.9 
7 297.5 776.0 
8 297.5 844.0 
9 303.0 663.5 

10 309.0 513.0 
11 315.0 218.9 
12 315.0 243.0 

There is no significant lack of fit in this case as one can infer by inspection of 
Figure 1 – the response surface for ultimate shear strength of material cured at varying 
temperatures.  The dotted lines represent the 95 percent confidence band on the mean 
prediction for any given factor level. 
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Figure 1. Response surface of ultimate shear versus cure temperature 

This curve was created from the following second-order polynomial model, 
called a “quadratic,” via least squares regression: 

Ŷ = 808.77 − 250.45 X − 328.58 X2 

The experiment design (Table 1) provides sufficient input levels to fit a third-order 
(cubic) term – X3. However, statistics show no significant improvement to the model’s 
predictive capability, thus there will be no advantage to making it cubic – only 
complication. When modeling data, it is best to keep things as simple as possible by a 
statistical principle called “parsimony.” 

The ‘hat’ over the response (output) variable “Y” indicates that this is a predicted 
value. The coefficients are based on coded values of X (the input variable) scaled from 
−1 to +1 over the range tested (280 to 315 degrees F). Coded models, a standard 
practice for RSM, facilitate comparison of coefficients, which becomes more useful with 
multiple factors, as will be seen in the next example. It pays immediate dividends for 
predicting the ultimate shear strength at the center point value for cure temperature of 
297.5 degrees F: Simply plug in zero for X, which leaves the model intercept of 808.77 as 
the expected outcome for ultimate shear in units of pounds per square inch (psi). 

Of much greater interest for predictive purposes is the location of the maximum 
shear strength. For a single response-measure, the polynomial model lends itself to 
simple calculus. However, numerical search algorithms, such as simplex hill-climbing, 
work better in general and they can be done quickly with the aid of computers. In this 
case, the optimal cure temperature is found at 290.8 degrees F (-0.381 coded) at which 
the ultimate shear strength reaches its peak at 856.5 psi.  To convey the uncertainty of a 
point estimate derived by modeling sample data from a particular experiment, it helps 
to provide its associated prediction interval (PI), in this case: 799 to 914 psi (p=0.05 or 
95 percent).  Note that the PI will always be wider than confidence interval (CI) on the 
mean prediction.  As a practical matter for the engineer or scientist, reporting the PI will 
lessen any unrealistic expectations of confirming precisely the value predicted in a one-
shot follow-up test. 
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Calculating propagation of error (POE) to find the flats 
Propagation of error (POE) measures the variation transmitted from input 

factors to the response as a function of the shape of the surface. It facilitates finding the 
flats – stable spots to locate your process, for example a high plateau of yield. For 
example, in Figure 2 you can see how a constant 5 degree variation in cure temperature 
creates a very small response (ultimate shear) variation at the mid-range area “A,” but 
when the set point is at the high end of the scale (“B”), the variation in ultimate shear 
becomes very large. 

 

 

Figure 2. Variation transmitted via the response surface 

The formula for POE, which involves the application of partial derivatives of the 
function (δf) with respect to the individual factors (Xi), is: 

i

2
2 2 2

ˆ X residualY
i i

fPOE
X

⎛ ⎞∂= σ = σ +σ⎜ ⎟∂⎝ ⎠
∑  

As a convenience to process engineers, this calculation produces an estimate of 
standard deviation in original units of their response measure. However, for statistical 
purposes, it’s best to work in terms of variance – symbolized by σ2, where the Greek 
letter sigma represents the standard deviation of the predicted response Y-hat, the 
input factors X and the unexplained residual (error); respectively in the equation. 

As noted already, calculus comes into play in the POE equation with the partial 
derivative of the model function taken with respect to each of the individual inputs (Xi) 
expressed in actual units, which can be derived by reversing the −1/+1 coding. (Keep in 
mind that the standard deviations of the input factors (X) are expressed in actual units.)   
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These calculations become clearer by example.  In this case, the actual equation 
for predicting ultimate shear strength is: 

Ŷ = -89892 + 624.06 X − 1.0729 X2 
(Remember that actual units of experimental temperatures were in the hundreds of 
degrees, which become quite large when squared, hence the small coefficient for this 
term.  This exemplifies why, as was discussed earlier, the coded equation serves better 
for interpretation.) 

Assume for the curing process that temperature can be controlled only to within 2.5 
degrees F of standard deviation. The residual standard deviation comes from an analysis of 
variance (ANOVA) done in conjunction with the fitting of the model – it is 23.72 psi. 

2 2POE (624.06 2 1.0729 X) 2.5 23.72= − ∗ ∗ ∗ +  

With some further number-crunching, this equation now serves to produce the 
picture shown in Figure 3 of the error transmitted via the surface from the variation in 
the model input – the temperature of this curing process. The minimum POE occurs 
around 290 degrees – where the shear strength peaks, which is very fortuitous! 

 

Figure 3. POE surface for cure-process 

This simple example provides the basics of RSM enhance by application of POE.  
The next case adds another element helpful for robust process design – a second, 
“dual,” response: A measure of variation at each experimental setup (run). 

RSM on several key factors affecting a semiconductor process 
Semiconductor manufacturing engineers5 desired a more robust result for 

resistivity (the response output “Y”) as a function of three key factors (the input “X”s) 
known to affect their single-wafer etching process: 

A. Gas flow rate 
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B. Temperature 
C. Pressure 

Other variables, for example radio frequency (RF) power, could not be controlled 
very precisely. To measure the resulting variation over time, batches of wafers were 
collected over 11 different days from each of 17 runs in a central composite design 
(CCD). The process engineers hoped to hit a target resistivity of 350 ohm-cm with 
minimal variation. 

The CCD is a popular template for RSM because it requires only a fraction of all 
the possible combinations from a full three-level factorial. Details on the CCD can be 
found in references 2 and 3. Figure 4 shows the CCD structure for three factors. 

 
Figure 4. Central composite design on three factors 

The star points project from the center point of the cubical two-level factorial. 
They are located a prescribed distance along the three main factor axes as shown in 
Table 2, which list factor levels in coded units (the experimenters kept the actual levels 
secret). For example, the star point projecting out to the right on Figure 4, identified by 
number 9 in Table 2, is located 1.68 units from the center (coded 0). To clarify what the 
implications of this design geometry for experiment, let’s say that the current setting of 
a factor is 100 and the factorial range will be plus or minus 10. Then the upper star point 
for the three-factor CCD would be set at 116.8 (and the lower star an equal interval 
below the center point at 100). These statistically-desirable distances increase as the 
number of factors goes up. However, the model-fit will be reliable only within the 
factorial ‘box.’ 

The CCD template calls for replication of the center point a number of times, 
ideally six for the best predictive properties in the middle region of experimentation. 
However, these experimenters ran only four center points – still not bad. The actual run 
order, including center points, should always be done at random. Otherwise the effects 
will become biased by time-related lurking variables such as the RF, thus confounding 
true cause-and-effect relationships. 
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Table 2: Design matrix for RSM on single-wafer etching process 

Std A B C Resistivity 
# Gas flow Temp. Press. Mean Std Dev 

1 -1 -1 -1 263.99 107.42 
2 1 -1 -1 389.94 96.12 
3 -1 1 -1 205.84 66.92 
4 1 1 -1 292.53 110.06 
5 -1 -1 1 290.10 141.33 
6 1 -1 1 302.32 147.24 
7 -1 1 1 164.29 79.95 
8 1 1 1 160.37 82.63 
9 -1.68 0 0 211.04 57.15 

10 1.68 0 0 272.08 53.42 
11 0 -1.68 0 293.78 68.93 
12 0 1.68 0 147.13 39.40 
13 0 0 -1.68 418.55 221.96 
14 0 0 1.68 273.06 193.89 
15 0 0 0 268.38 64.29 
16 0 0 0 236.46 81.86 
17 0 0 0 250.02 73.98 
18 0 0 0 315.56 99.11 

Modeling both the mean and the process variance 
By collecting repeated samples for each run, experimenters can model both the 

mean (average) and variance (or standard deviation). This enables the following tactics 
for process optimization: 

• From the mean response find factor settings that meet the targeted 
response 

• Use the statistics on variation to achieve operating conditions that are 
robust to uncontrolled (noise) variables. 

Ideally, the responses measured during the course of any given run will be 
representative of the long-term process variability of the process. For example, the 
values for mean and standard deviation in Table 2 are derived from nearly a dozen daily 
batches over several weeks on the line. However, as few as three samples per 
experimental run can suffice for this dual response approach. In any case, no matter 
what the sample size (n), if the study conditions are not representative of true 
manufacturing conditions, this method may underestimate the overall variation. 

To re-set the stage for this case, here is the experimenters’ purpose statement 
“…  Wafers produced on any given day (i.e., within the same batch) may be different 
than wafers produced on another day…  Variation due to time is designed into the 
experimentation process by using test wafers chosen at random across several days…  It 
may be possible to minimize...[this]…variation…by manipulating the…control variables.” 
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An engineer from a major chip-maker told one of the authors (Mark) that variations 
from batch-to-batch can be a “huge” problem in semiconductor manufacturing.6 

Least-squares regression of the Table 2 data produced these coded predictive 
models, for resistivity mean and standard deviation: 

• Mean =  255.71 + 23.69A − 49.06B − 35.14C − 25.54AC − 16.57B2 + 27.75C2 
(p<0.0001, Adjusted R2 0.84) 

• Log10 Std Dev = 1.82 − 0.077B + 0.012C + 0.18C2 
(p<0.0001, Adjusted R2 0.76) 

Both models are quadratic, i.e., second-order polynomials, and they are highly-
significant statistically as indicated by their low “p” values and high adjusted r-squared 
values.  The standard deviation has been transformed via a logarithm, which is standard 
practice for statistical reasons.  To keep them simple, these models were reduced by 
backward regression at p of 0.10.  Keep in mind that these predictive models are strictly 
empirical – constructed only to provide an adequate approximation of the true response 
surface.   

All models are wrong, but some are useful. - George Box (inventor of RSM) 
Notice in the model for the mean that it includes squared terms for B and C, but 

not factor A.  Thus, one can infer that the response surface will be less ‘curvy’ along the 
A dimension.  The “perturbation” plot shown in Figure 5 illustrates this by the straight 
line for A.  This plot originates from the center point of the experimental region and 
from there it measures response in each of the three dimensional axes. 

 

Figure 5. Perturbation plot 

Figure 6 shows the contour plot for factors B and C with A set at its +1 (high 
factorial) level.  (Recall that it’s best to stay within the ‘box’ of factorial settings in the 
CCD – do not extrapolate to the axial levels – 1.68 coded units in this case.) 
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Figure 6. Contour plot of temperature vs pressure with gas flow (A) at +1 level 

The contour for the targeted resistance of 350 cuts through a region where 
pressure is relatively low, but the range of possible temperatures is fairly broad.  Before 
choosing a specific setup, the POE can be taken into account to minimize manufacturing 
variation caused by variability in the control-factor settings.  However, at this stage the 
actual factor levels, −1 to +1, and their standard deviations (in parentheses) must be 
detailed.  For illustrative purposes, assume these are: 

A. 30 to 40 (1.0) sccm *[26.591 to 43.409] 
B. 30 to 50 (1.0) deg C *[23.1821 to 56.8179] 
C. 80 to 120 (3.0) mTorr *(66.3641 to 133.636) 

[The ranges shown in asterisked brackets represent the axial star points that 
protrude outside the factorial box of the central composite design.] These factor 
settings produce the following actual predictive equation (rounded): 

Mean Resistivity = -3.71 + 30.3 A + 8.35 B − 6.69 C − 0.255 AC − 0.166 B2 + 0.0694 C2 

Specialized DOE software4 performed the necessary calculations to produce the 
POE surface displayed by Figure 7b. For comparison’s sake, the resistivity mean model 
graph is shown in Figure 7a.  (Both graphs were generated with factor A fixed at its +1 
level.)  Now you can see how the POE finds the flats – the regions where process 
response remains most robust to factor variations. 
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Figures 7a & b. Surfaces of resistivity mean (left) and POE (right) 

The last puzzle piece for determining where to set up the single-wafer etching 
process is the view of measured variation caused by batch-to-batch differences (Figure 
8). 

 

Figure 8. Response surface of resistivity standard deviation 

The least variation occurs at relatively high temperature and mid-pressure.  The 
gas flow causes little or no difference in standard deviation, which may be helpful for 
making the required tradeoffs – a compromise of meeting product specifications, while 
maintaining them from batch-to-batch in spite of control-factor variations.  For 
example, if setting temperature and pressure for reduction of variation causes the 
resistivity to go off target, perhaps the gas flow can be adjusted to get the process 
outback back in specification. 
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Accomplishing the most desirable tradeoff of performance and robustness 
To determine the most desirable combination of responses, RSM practitioners7,8 

typically establish this objective function: 

( )
1
n

1 2 nD d d ... d= × × ×  

In this equation the overall desirability, D, is computed by multiplying the 
individual desirabilities for each response, all of which are scaled from 0 to 1.  Figure 9a 
shows how this is done for a targeted response such as resistance in this case.  The goal 
of minimize, desired for POE and standard deviation, is pictured in Figure 9b. 

 
 

Figure 9a & b. Desirability scales for target (left) and minimization (right) 

Figure 10 shows the results of a computer4 search of the factorial region of the 
modeled process space for the most desirable setup based on goals of meeting the 
product specification of 350 (plus or minus 10), while simultaneously minimizing POE 
and batch-to-batch deviations. 

 

Figure 10. Most desirable process settings 

The top row depicts the recommended factor settings that produce the 
predicted responses in the second row.  (Notice, for example, that the resistivity hits the 
targeted spot for maximum desirability.)  Figure 11 presents a view of the desirability 
surface. 
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Figure 11. 3D view of desirable combinations of temperature vs pressure  
(gas flow set at +1 level) 

The ideal setup coordinate (A,B,C) for meeting specification with least variation 
is (1,-1,-0.5).  The authors of this original case study5 recommended coordinate  
(1.18, -0.80, -0.57), which extrapolates factor A (gas flow) beyond the factorial region.  
We were more conservative.  Nevertheless, the results do not differ appreciably.  
Follow-up runs are always recommended to put predictions to the test. 

Conclusion 
Response surface methods (RSM) provide statistically-validated predictive 

models that can then be manipulated for finding optimal process configurations. 
Variation transmitted to responses from poorly-controlled process factors can be 
accounted for by the mathematical technique of propagation of error (POE), which 
facilitates ‘finding the flats’ on the surfaces generated by RSM.  The dual response 
approach to RSM captures the standard deviation of the output(s) as well as the 
average.  It accounts for unknown sources of variation.  Dual response plus POE 
provides a more useful model of overall response variation.  The end-result of applying 
these statistical tools for design and analysis of experiments will be in-specification 
products that exhibit minimal variability – the ultimate objective of robust design. 

The authors 
Mark and Pat are principals of Stat-Ease, Inc.  They both are chemical engineers 

by profession (State of Minnesota).  Mark and Pat co-authored two books on that detail 
statistical tools for process experimentation: DOE Simplified1and RSM Simplified.2 
They’ve also collaborated on numerous articles on design of experiments (DOE), most of 
which can be found posted at www.statease.com. 
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