

Maximizing this educational opportunity

Welcome everyone! To make the most from this webinar:

- Attendees on mute
- Questions addressed afterward

Send further questions to shari@statease.com

PS: Presentation posted to www.statease.com/webinars/

Please press the raise-hand button if you are with me.

Saving Runs with Fractional-Factorial Designs

Planning the Experiment

- 1. Define the **response(s)** to be measured make sure the measurement system will produce accurate and ideally, numerical results. (Not pass/fail)
- 2. What factors are likely to influence the response(s), and what factor range should be studied?
- 3. Choose a **design** that will provide the information you need. Consider your strategy of experimentation at this stage are you doing:
 - Screening
 - Characterization
 - Optimization
 - Ruggedness Testing
- 4. Plan your budget in advance so you can afford to go back to the system to run model verification points to confirm your analysis results.

Saving Runs with Fractional-Factorial Designs

Planning the Experiment

- Screening Reveal the significant main (linear) effects in the system.
 Assuming that interactions exist in the system, use a design that keeps main effect information unbiased from two-factor interaction effects.
- Characterization Identify both main effects and two-factor interactions. Use a design that estimates all two-factor interactions.
- Robustness/Ruggedness Testing Confirm that a system is stable (no effects) over a very limited factor range. Use a design with a small number of runs (yet still meets power requirements).

Saving Runs with Fractional-Factorial Designs

7

Agenda: Fractional-Factorial Designs

- Planning a DOE based on information objectives
- Creating a fractional-factorial design
 - Concept of aliasing & why it matters
- Minimum-run designs
- Guide to choosing small-run designs

Saving Runs with Fractional-Factorial Designs

Fractional Factorial Design Popcorn DOE as a 2³: No Aliases

	Α	В	С	Taste
1	-	_	-	74
2	+	_	_	75
3	1	+	-	71
4	+	+	_	80
5	-	_	+	81
6	+	_	+	77
7	_	+	+	42
8	+	+	+	32
Effect	-1.0	-20.5	-17.0	

Starting simple:

A typical 3-factor DOE with 8 runs. All columns of low/highs are unique. Effects are all calculated independently.

$$\mathsf{Effect}(\Delta y) = \frac{\sum y_{+}}{n_{+}} - \frac{\sum y_{-}}{n_{-}}$$

Saving Runs with Fractional-Factorial Designs

Fractional Factorial Design

	I	Α	В	С	AB	AC	ВС	ABC	Taste
1	+	_	_	-	+	+	+	_	74
2	+	+	_	_	_	-	+	+	75
3	+	_	+	_	-	+	_	+	71
4	+	+	+	_	+	_	_	_	80
5	+	_	_	+	+	-	_	+	81
6	+	+	_	+	-	+	_	_	77
7	+	_	+	+	_	_	+	_	42
8	+	+	+	+	+	+	+	+	32
	66.5	-1.0	-20.5	-17.0	0.5	-6.0	-21.5	-3.5	

To form a half fraction, eliminate the negative ABC rows!

Saving Runs with Fractional-Factorial Designs

Fractional Factorial Design Popcorn as a 2³⁻¹: Aliases (Confounding)

	ı	Α	В	С	AB	AC	ВС	ABC	Taste
1									
2	+	+	_	_	_	_	+	+	75
3	+	_	+	_	-	+	_	+	71
4									
5	+	_	_	+	+	_	_	+	81
6									
7									
8	+	+	+	+	+	+	+	+	32
	64.75	-22.5	-26.5	-16.5	-16.5	-26.5	-22.5	64.75	

What aliases have we created?

Saving Runs with Fractional-Factorial Designs

11

Fractional Factorial Design

2³⁻¹ Aliases via Design-Expert Software

Factorial Effects Defining Contrast I = ABC

[Intercept] = Intercept + ABC

[A] = A + BC

[B] = B + AC

[C] = C + AB

Resolution is determined by counting the letters in the shortest word in the defining contrast.

This is a Resolution III (red) design.

Main effects aliased with 2-factor interactions (2FI).

Saving Runs with Fractional-Factorial Designs

Aliases What do they tell us?

2 ³	Full	2 ³⁻¹ Fraction			
Α	-1.0	[A]	-22.5		
В	-20.5	[B]	-26.5		
С	-17.0	[C]	-16.5		
AB	0.5				
AC	-6.0				
ВС	-21.5				
ABC	-3.5				

Aliased effects are the linear combination of the true (unknown) effects. In a Res III design, the main effects are biased by any existing two-factor interactions.

$$[A] = A + BC = (-1.0) + (-21.5) = -22.5$$

$$[B] = B + AC = (-20.5) + (-6.0) = -26.5$$

$$[C] = C + AB = (-17.0) + (0.5) = -16.5$$

Saving Runs with Fractional-Factorial Designs

13

4 Factors, 16 Runs (2⁴ design) All factor effects uniquely estimated

Std	- 1	А	В	С	D	AB	AC	AD	вс	BD	CD	ABC	ABD	ACD	BCD	ABCD	rate
1	+	-	-	-	-	+	+	+	+	+	+	-	-	-	-	+	45
2	+	+	-	-	-	-	-	-	+	+	+	+	+	+	-	-	71
3	+	-	+	-	-	-	+	+	-	-	+	+	+	-	+	-	48
4	+	+	+	-	-	+	-	-	-	-	+	-	-	+	+	+	65
5	+	-	-	+	-	+	-	+	-	+	-	+	-	+	+	-	68
6	+	+	-	+	-	-	+	-	-	+	-	-	+	-	+	+	60
7	+	-	+	+	-	-	-	+	+	-	-	-	+	+	-	+	80
8	+	+	+	+	-	+	+	-	+	-	-	+	-	-	-	-	65
9	+	-	-	-	+	+	+	-	+	-	-	-	+	+	+	-	43
10	+	+	-	-	+	-	-	+	+	-	-	+	1	-	+	+	100
11	+	-	+	-	+	-	+	-	-	+	-	+	-	+	-	+	45
12	+	+	+	-	+	+	-	+	-	+	-	-	+	-	-	-	104
13	+	-	-	+	+	+	-	-	-	-	+	+	+	-	-	+	75
14	+	+	-	+	+	-	+	+	-	-	+	-	-	+	-	-	86
15	+	-	+	+	+	-	-	-	+	+	+	-	-	-	+	-	70
16	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	96
	70.06	21.63	3.13	9.88	14.63	0.12	-18.12	16.63	2.38	-0.38	-1.13	1.88	4.13	-1.63	-2.62	1.37	

Saving Runs with Fractional-Factorial Designs

4 Factors, 8 Runs (2⁴⁻¹ design) Can you see the aliases?

Std	- 1	Α	В	С	D	AB	AC	AD	ВС	BD	CD	ABC	ABD	ACD	BCD	ABCD	rate
1	+	-	-	-	-	+	+	+	+	+	+	-	-	-	-	+	45
2																	
3																	
4	+	+	+	-	-	+	-	-	-	-	+	-	-	+	+	+	65
5																	
6	+	+	1	+	-	-	+	-	-	+	-	-	+	-	+	+	60
7	+	1	+	+	ı	ı	1	+	+	-	ı	ı	+	+	-	+	80
8																	
9																	
10	+	+	ı	ı	+	ı	-	+	+	-	ı	+	ı	-	+	+	100
11	+	1	+	-	+	-	+	-	-	+	-	+	ı	+	-	+	45
12																	
13	+	1	-	+	+	+	-	-	-	-	+	+	+	-	-	+	75
14																	
15																	
16	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	96
	70.8	19.0	1.5	14.0	16.5	-1.0	-18.5	19.0	19.0	-18.5	-1.0	16.5	14.0	1.5	19.0	70.8	

Saving Runs with Fractional-Factorial Designs

15

Fractional Factorial Design

Assumption:

3FI+ terms have

negligible effects.

2⁴⁻¹Aliases via Design-Expert Software

```
Factorial Effects Defining Contrast
I = ABCD
```

[Intercept] = Intercept + ABCD

[A] = A + BCD

[B] = B + ACD

[C] = C + ABD

C] - C · ADD

[D] = D + ABC

[AB] = AB + CD

[AC] = AC + BD

[AD] = AD + BC

This is a Resolution IV (yellow) design.

Main effects are estimated well. 2FI terms are aliased

Saving Runs with Fractional-Factorial Designs

Reactor Case Study 25-1 Fractional Factorial

This is a Resolution V (green) design.

- Intercept aliased with a 5 FI,
- · Main effects aliased with 4 FIs,
- 2 FIs aliased with 3 FIs.

Estimated Term	Aliased Terms
Intercept	= Intercept + ABCDE
Α	= A + BCDE
В	= B + ACDE
С	= C + ABDE
D	= D + ABCE
E	= E + ABCD
AB	= AB + CDE
AC	= AC + BDE
AD	= AD + BCE
AE	= AE + BCD
ВС	= BC + ADE
BD	= BD + ACE
BE	= BE + ACD
CD	= CD + ABE
CE	= CE + ABD
DE	= DE + ABC

Saving Runs with Fractional-Factorial Designs

17

Reactor Case Study

2⁵⁻¹ Fractional Factorial

The Design-Expert selection matrix for two-level designs is color-coded:

- **▶Green** for go-ahead on resolution V or better,
- >Yellow for proceed with caution on resolution IV,
- **▶ Red** for stop on resolution III designs.

Saving Runs with Fractional-Factorial Designs

Fractional Factorial Design Exploring Alias Structures

Let's look at:

2 levels, 7 factors, 1/8th fraction = 16 runs

• (2⁷⁻³,)7 factors in 16 runs:

Solid Res IV: <u>All</u> 21 two-factor interactions aliased with each other.

2⁷⁻², 7 factors in 32 runs:
 Barely Res IV: Most (15) 2FIs aliased with 3FIs only, i.e., cleanly.

Resolution only tells the worst that can happen. **Always** examine the alias structure when setting up and analyzing your designs.

Saving Runs with Fractional-Factorial Designs

19

Agenda: Fractional-Factorial Designs

- Planning a DOE based on information objectives
- Creating a fractional-factorial design
 - Concept of aliasing & why it matters
- ➤ Minimum-run designs
- Guide to choosing small-run designs

Saving Runs with Fractional-Factorial Designs

Minimum Run Characterize (Res V) (MR5) Designs*

Regular fractions (2^{k-p} fractional factorials) of 2^k designs often contain more runs than necessary to estimate the coefficients in the 2FI model.

- The smallest regular resolution V design for k=7 uses 64 runs (2⁷⁻¹) to estimate 29 coefficients.
- Our balanced minimum run resolution V (MR5) design for k=7 has 30 runs, a savings of 34 runs.
- Disadvantage partial aliasing. MR5 designs are irregular fractions, so effect estimates are dependent on other terms chosen.

Saving Runs with Fractional-Factorial Designs

21

Minimum Run Characterize (Res V) Designs Provide Considerable Savings

k	2 ^{k-p}	MR5
6	32	22
7	64	30
8	64	38
9	128	46
10	128	56
11	128	68
12	256	80
13	256	92
14	256	106

k	2 ^{k-p}	MR5
15	256	122
16	256	138
17	256	154
18	512	172
19	512	192
20	512	212
21	512	232
25	1024	326
30	1024	466

Saving Runs with Fractional-Factorial Designs

Tablet Strength MR5 Design

A process development team wants to characterize the effects (estimate all MEs and 2FIs)of eight factors on the hardness and friability of their tablets. Design choices include:

- 64 run 28-2 resolution V fraction.
- 38 run Minimum-Run resolution V (MR5) design.

The teams decides to use the 38 run MR5 design.

DEPHP section 3

23

Tablet Strength MR5 Design Background - Factors

There are eight factors. The first three are properties of the powder and the last five are machine settings.

Factor	Name	Units
Α	Shape	
В	Binder	
С	Lubricant	
D	Turret speed	THP
E	Feed frame paddle speed	RPM
F	Tablet cylinder height, precomp	mm
G	Tablet cylinder height, main compress	mm
Н	Fill cam height	mm

DEPHP section 3

Tablet Strength MR5 Design Build Design (page 3 of 3)

3. There are two responses:

4. Power is adequate:

Name	Units	Delta (Signal)	Sigma (Noise)	Signal/ Noise	Power for A	Power for B	Power for C	Power for D	Power for E	Power for F	Power for G	Power for H
Hardness	kg	0.5	0.5	1	84.0%	82.8%	81.1%	81.1%	83.9%	84.0%	84.0%	83.9%
Friablilty	%	0.1	0.1	1	84.0%	82.8%	81.1%	81.1%	83.9%	84.0%	84.0%	83.9%

Finish

Next >>

DEPHP section 3

27

Minimum-Run Screening MR4 Designs*

The concept of screening is to discover the vital few primary factors that drive the process. We assume that interactions may exist in the system.

Minimum-Run Screening (MR4):

- MR4 designs are for absolute-minimum-run screening.
- They often offer considerable savings versus a standard 2^{k-p} fraction with the same resolution.
- They require only two runs for each factor (i.e., runs = 2k).
- However, for robust design, we advise that you go with the "minimum runs plus 2" option.

See the next slide for details.

Saving Runs with Fractional-Factorial Designs

Minimum-Run Screening (MR4+2) Designs

Problems:

- If even 1 run lost, design becomes resolution III main effects become badly aliased.
- Reduction in runs causes power loss <u>may miss significant</u> effects.

Evaluate power <u>before</u> doing experiment.

Solution:

 To risks of resolution loss and to increase power, <u>add some</u> <u>padding</u>: Use the MR4+2 designs (DX default).

Saving Runs with Fractional-Factorial Designs

29

MR4 (+2) Designs Provide Considerable Savings

k	2 ^{k-p}	MR4+2
5	16	12
6	16	14
7	16	16
8	16*	18
9	32	20
10	32	22
11	32	24
12	32	26
13	32	28
14	32	30
15	32	32

k	2 ^{k-p}	MR4+2
16	32*	34
17	64	36
19	64	40
20	64	42
21	64	44
25	64	52
30	64	62
35	128	72
40	128	82
45	128	92
50	128	102

* No savings for 8, 16 (or 32) factors.

Saving Runs with Fractional-Factorial Designs

Agenda: Fractional-Factorial Designs

- > Planning a DOE based on information objectives
- Creating a fractional-factorial design
 - Concept of aliasing & why it matters
- Minimum-run designs
- Guide to choosing small-run designs

Saving Runs with Fractional-Factorial Designs

31

Planning the Experiment

- Choosing the Design
- Screening assuming that interactions exist in the system, use a
 design that keeps main effect information unbiased from two-factor
 interaction effects.
 - Resolution IV (yellow), Res V (green) or better designs
 - NOT Res III (red) Plackett-Burman or Taguchi designs
- Characterization use a design that can estimate all two-factor interactions (Full factorial or Resolution V+).
 - Consider adding center points to test for non-linearity (curvature)
- Robustness/Ruggedness Testing use a design with a small number of runs (yet still meets power requirements) (Resolution III or IV).

Saving Runs with Fractional-Factorial Designs

Guide to Using Small-Run Designs Screening

Goal: Provide unbiased estimates of the main effects; i.e., not confounded by two-factor interactions.

Screening designs:

2^{k-p} algebraic fractions of resolution IV (or higher)

Min-Run Screen (MR4) (should be padded by 2 extra runs, MR4+2)

Definitive Screening Designs (DSDs)*
 (in Response Surface section – use RSM analysis)

Warning: In the presence of two-factor interactions resolution III designs will give misleading information.

Saving Runs with Fractional-Factorial Designs

33

Guide to Using Small-Run Designs Characterization

Goal: Provide estimates of main effects <u>and</u> two-factor interactions.

Characterization designs:

Full factorials

2^{k-p} algebraic fractions of resolution V (or higher)

Min-Run Characterize (MR5)

Note: Do not replicate a fractional factorial to increase power.

Add a new fraction instead. This increases power, reduces aliases and adds new combinations to better fill the DOE space.

Saving Runs with Fractional-Factorial Designs

Modern DOE for Process Optimization Mixture Design for Optimal Formulations

Individuals	Teams (6+ people)
Improve your DOE skills	Choose your date & time
Topics applicable to both novice and advanced practitioners	Add company case studies

Learn more: www.statease.com
Contact: workshops@statease.com

Saving Runs with Fractional-Factorial Designs

