

Maximizing this educational opportunity

Welcome everyone! To make the most from this webinar:

- Attendees on mute
- Send questions to <u>mark@statease.com</u>

PS: Presentation slides* posted to www.statease.com/webinars/ from there link to the YouTube video.

"Please press the raise-hand button if you are with me.

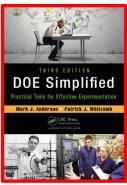
Milestones to Modern DOE

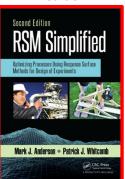
Talking Points

Based on 50+ years of DOE experience

- The evolution of DOE going back to early 1900's
- Simple comparative studies—t and F testing
- Industrial multifactor DOE success stories:
- Two-level design—Bearing life*
 *Illustrates downsides of one-factor-at-a-time (OFAT)
- Response surface methods—Electrodischarge milling*
 *Demo of state-of-the-art DOE software from Stat-Ease

Milestones to Modern DOE


3


My Payback: Practical Paperbacks*

KISMIF: Keeping it simple and making it fun!

2nd edition

1st edition

Focus of this talk will be process DOE (not mixture)

Milestones to Modern DOE

Before Statistics and Multifactor Testing How industrial experimenters succeeded

- 1. <u>Scientific method</u>: Commonly attributed to Francis Bacon in the 17th century, stemming from Aristotle in mid-300s BC.
- 2. Persistence: Edison's 1% inspiration and 99% perspiration.
- Good engineering: Edison's protégé Charles Steinmetz once charged \$1000 to GE for knowing which part to investigate on an electrical device, \$1 for the chalk mark and \$999 for knowing where to put it.

4. "Dumb luck"!

Source: "Beyond Probability, A pragmatic approach to uncertainty quantification in engineering," Scott Ferson, NASA Statistical Engineering Symposium, Williamsburg, Virginia, 4 May, 2011

Milestones to Modern DOE

5

The Beginning of Statistical Methods Regression of happenstance data (1/2)

Regression analysis, invented in the late 19th century by Francis Galton (pictured),* connects the responses (Y's) to the input factors (X's) via mathematical models of the form: $\hat{\mathbf{Y}} = \mathbf{\beta}_0 + \mathbf{\beta}_1 \mathbf{X}_1 + \mathbf{\beta}_2 \mathbf{X}_2 \dots + \mathbf{\beta}_k \mathbf{X}_k + \mathbf{\epsilon}$

where k is the number of factors and ϵ represents error.

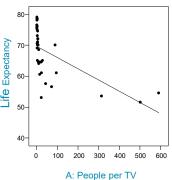
*"Regression towards mediocrity in hereditary stature," *The Journal of the Anthropological Institute of Great Britain and Ireland* (1886), 15: 246–263

"Engineers are quite comfortable these days - in fact, <u>far too comfortable</u> – with results from the blackest of black boxes: neural nets, genetic algorithms, data mining, and the like."

[e.g., machine learning and, AI]

- Russell Lenth (Professor of Statistics, University of Iowa)

Milestones to Modern DOE



The Beginning of Statistical Methods Regression of happenstance data (2/2)

A Cal Poly stats prof observed* that life expectancy in various countries varies with the number of people per television (TV). This solves our problems replacing obsolete devices: Ship them to developing nations so these poor TV-deprived people can live longer!;)

*Allan Rossman, "Televisions, Physicians, and Life Expectancy." *Journal of Statistics Education* 2, no. 2 (1994).

Milestones to Modern DOE

7

The Beginning of Statistical Methods

Simple comparative experiments

More than a century ago, William Sealy Gossett, a chemist at Guiness Brewery, developed a statistical method called the "t-test" to determine when the soft-resin content (desirable for stout) in hop flowers differed significantly from the brewery's standard.*

This is a simple comparative experiment on one factor at a time (OFAT). It is still widely used of sensory and other evaluations.

*(Published in 1908 under the pseudonym "Student".)

"He possessed a wickedly fertile imagination and more energy and focus than a St. Bernard in a snowstorm."

– Stephen Ziliak

Milestones to Modern DOE

A Very Small Dose of Stat Detail

One-factor comparison via t-tests

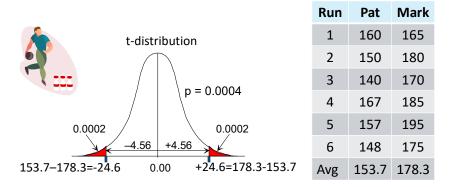
<u>Legal judgment</u>: Innocent until proven guilty. <u>Hypothesis test</u>: Same until proven different.

$$\begin{split} &H_0("null"): \ \mu_1=\mu_2 \ (\text{samples from same population}) \\ &H_1("alternative"): \ \mu_1\neq\mu_2 \ (\text{samples from different populations}) \end{split}$$

$$t = \frac{\overline{Y}_1 - \overline{Y}_2}{s_{\overline{Y}_1 - \overline{Y}_2}}$$

 $t = \frac{\text{difference between averages}}{\text{standard deviation of difference}}$

Milestones to Modern DOE


9

Comparisons via t-Test

Case study: Stat-Ease bowling contest

t = 4.56 standard deviations between means, so by two-tailed test (Pat-Mark or Mark-Pat) p = 0.0004, thus with >99.9% confidence Mark is the better bowler. ☺

Milestones to Modern DOE

Fisher: Inventor of Modern-Day Statistics and multilevel, multifactor experiment designs

"Personally, the writer prefers to set a low standard of significance at the 5 per cent point and ignore entirely all results which fail to reach this level. A scientific fact should be regarded as experimentally established only if a properly designed experiment rarely fails to give this level of significance."

-Sir Ronald Fisher "The Arrangement of Field Experiments," The Journal of the Ministry of Agriculture, 1926, 33, 504.

Little known fact:

When Fisher invented DOE at Rothamsted Experimental Station in England, computations were done by 'calculators'

– mathematical adepts, mainly female.

Milestones to Modern DOE

11

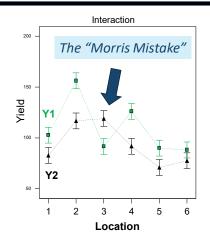
Example of Fisher's pioneering work:

A randomized, replicated, blocked DOE (1/3)

In a landmark field trial on barley in Minnesota, agronomists guided by Fisher grew 5 varieties (M, S, V, T, P) at 5 ag stations in 1931 and 1932.

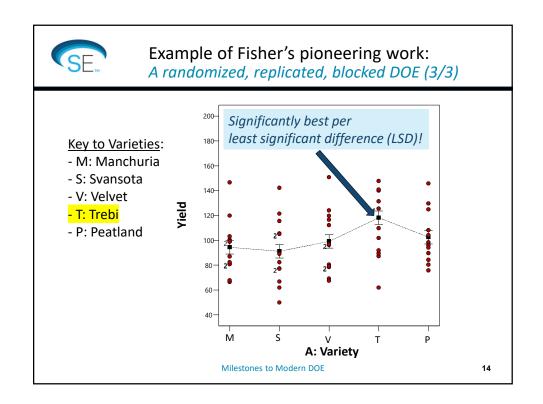
Which variety stands out? (Hint: See Graphs!)

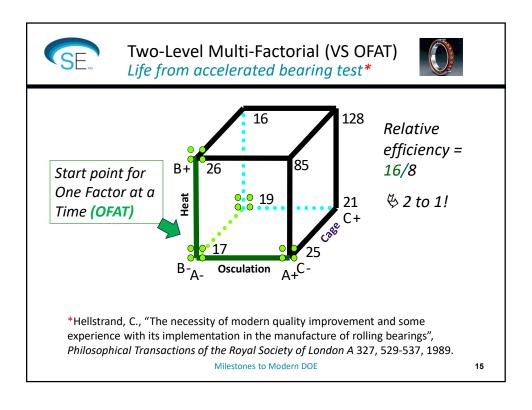
Location	Year	M	S	v	T	P
1	1	81	105	120	110	98
	2	81	82	80	87	84
2	1	147	145	151	192	146
	2	100	116	112	148	108
3	1	82	77	78	131	90
	2	103	105	117	140	130
4	1	120	121	124	141	125
	2	99	62	96	126	76
5	1	99	89	69	89	104
	2	66	50	97	62	80
6	1	87	77	79	102	96
	2	68	67	67	0.2	0.4


Milestones to Modern DOE

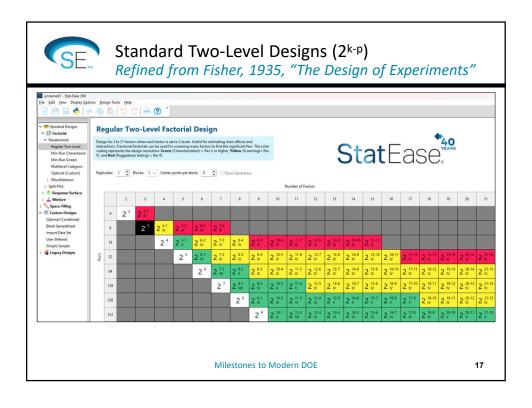
Example of Fisher's pioneering work:

A randomized, replicated, blocked DOE (2/3)


In a book called *Visualizing Data* (Hobart Press, 1993) William S. Cleveland suggests that the experimenters* reversed the numbers year-by-year in their report for location 3 (Morris, MN). It is hard to see in the raw data, but obvious when graphed with varieties averaged. The 'take home' message:

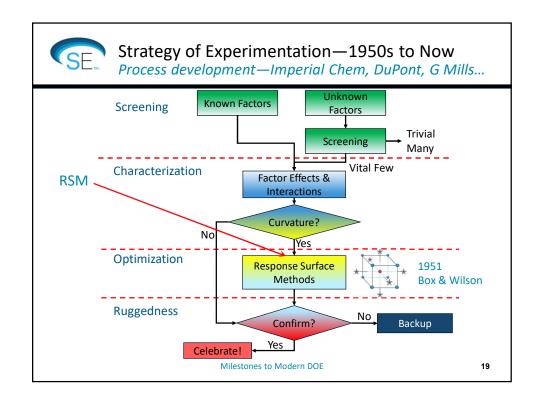


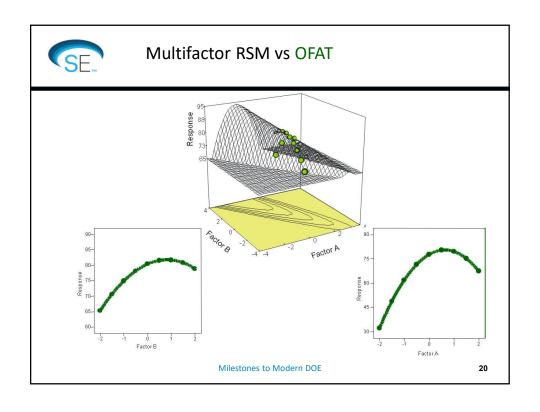

One picture = 1000 numbers!

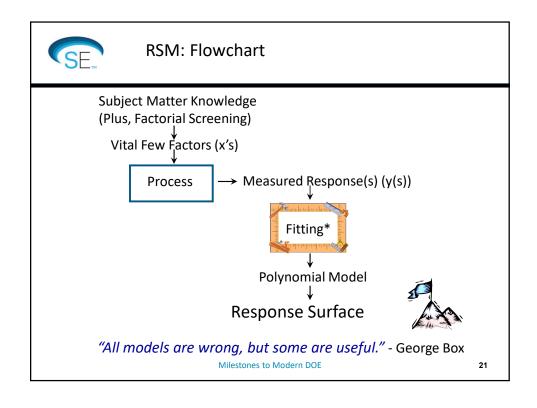

*(Immer, et al, Journal of Agronomy, 26, 403-419, 1934).

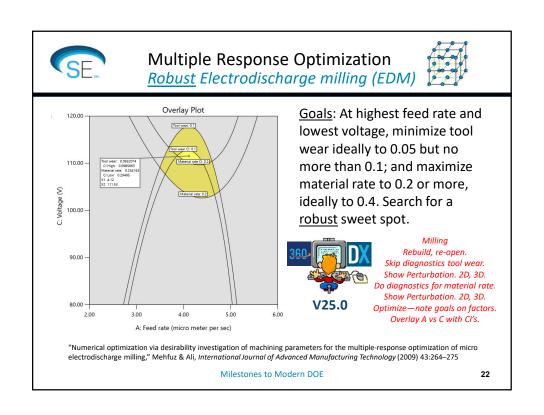
Milestones to Modern DOE

Minimum-Run Designs (up to 50 factors)


Considerable savings over standard fractions


Characterization				
Factors	Std Res V	MR5*		
6	32	22		
7	64	30		
8	64	38		
9	128	46		
10	128	56		
11	128	68		
12	256	80		
13	256	92		
14	256	106		


Screening					
Factors	Std Res IV	MR4**			
9	32	18			
10	32	20			
11	32	22			
12	32	24			
13	32	26			
14	32	28			
15	32	24			
16	32	26			
17	64	28			


- * Oehlert & Whitcomb, "Small, Efficient, Equireplicated Resolution V Fractions of 2^k designs ...", Fall Technical Conference, 2002.
- ** Anderson & Whitcomb, "Screening Process Factors In the Presence of Interactions," Annual Quality Congress, American Society of Quality, Toronto, 2004.

Milestones to Modern DOE

Conclusion

➤ Trim out the OFAT!

By making use of <u>multifactor</u> design of experiments (DOE) starting with simple two-level factorials and graduating to response surface methods (RSM) for processes, you will greatly accelerate product development and process optimization. We've come a long way!

Milestones to Modern DOE

23

Stat-Ease Training:

Sharpen Up Your DOE Skills

- Mixture Design for Optimal Formulations (public or private)
- ☐ Designed Experiments for Specific Industries (private only)

Individuals (public)	Teams (private)	
Improve your DOE skills	Choose your own dates & times	
Ideal for novice to advanced	Customize via select case studies	

Learn more & then register:

www.statease.com

Contact:

workshops@statease.com

Milestones to Modern DOE

