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Forward to Use of DOE in Engineering and Science 
 

 

Dr. Lye’s association with Stat-Ease and me goes back to 2005 when he started using our software 
for teaching DOE. He came to our headquarters in Minneapolis for a workshop and gave us a book 
on Newfoundland that inspired me to visit him in St. John’s in 2018. Dr. Lye told me then that 
upon his retirement from Memorial University he would devote time to a comprehensive collection 
of DOE case studies. I am very pleased to see this come to fruition. 

I did my first DOE in 1974 and took to this multifactor testing approach immediately as a catalyst 
for my work as a chemical engineer working on process development. Why anyone would continue 
to study only one factor at a time (OFAT) remains a mystery to me. However, OFAT being 
established throughout the educational process as the scientific method cannot be easily undone in 
the minds of highly-trained experimenters. The only way that I’ve found to do so is by presenting 
relevant examples. This book by Dr. Lye provides a treasure trove for anyone who wants to 
persuade others to do DOE or those that seek compelling evidence of its advantages for their 
research work. 

Now that Dr. Lye has done such a great service to the field of DOE by presenting these 64 
examples, I hope that he will turn his attention to making his DOE-GolferTM training device legal 
for use on the course. That will solve all my problems for putting. However, I will settle for Dr. 
Lye sparing time from happy retirement to continue his good work spreading the good word about 
DOE. Well done! 

 

 

 

- Mark J. Anderson, PE, CQE 
Principal, Stat-Ease, Inc. 
Minneapolis, MN, USA 

July 9, 2019 
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______________________________________________ 
PREFACE 

“The only way to know how a complex system will behave — after you modify it — is to modify it 
and see how it behaves.”  George Box 

Since 1995, I have been teaching a graduate course strangely titled “Similitude, Modelling, and 
Data Analysis” ENGI 9516 at the Faculty of Engineering and Applied Science, Memorial 
University of Newfoundland.  The original instructor of this course, Dr. James Sharp, was an 
expert in the field of hydraulics with particular expertise in hydraulic models and dimensional 
analysis. He taught this course for many years and also wrote several books on these subjects.  A 
few years before he retired, he asked me to co-teach the course.  Since my expertise is in statistical 
hydrology, I added a few topics on data analysis, particularly regression analysis. When Dr. Sharp 
retired, I became the sole instructor of the course, and as I am not an expert in similitude or 
dimensional analysis, the current course content is mostly on the design and analysis of multifactor 
experiments.  Dimensional analysis and how it can be combined with modern design of experiment 
methodologies is now only a small part of my course. However, to prevent unnecessary university 
calendar changes, the name of the course has remained the same. The course is now better known 
as the Design of Experiment or the DOE course and is one of the core courses for graduate students 
in engineering.  Students taking the course come from all disciplines of engineering and from the 
Faculty of Science. Over the years, the class size has grown from about 20 students to 40-50, in 
recent years. The course covers the following topics: 

1. Design of Experiments, definition of and strategies for experimentation 
2. Factorial vs. one-factor-at-a-time (OFAT) experiments 
3. Review of one-factor experiments, regression, and ANOVA 
4. General factorial experiments 
5. Design and analysis of 2-level factorial experiments  
6. Concepts of blocking and confounding 
7. Fractional factorial design and analysis, fold-over designs 
8. Response Surface Methodology (RSM): Central Composite Design (CCD), and Box-

Behnken Design (BBD) 
9. Design for computer experiments, uniform designs, and other designs 
10. Restricted randomization and hard-to-change factors 
11. Optimal designs, multiple linear constraints, and definitive screening designs. 
12. Methods of dimensional analysis  
13. The combined use of DOE and dimensional analysis 
 
Mixture designs, combined mixture-process designs, Taguchi methods, and other advanced topics 
are not covered.  

 
The use of design of experiments (DOE) methodologies such as the topics covered in the course 
has increased exponentially over the years in almost all areas of science and engineering. There 
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are also many textbooks by both statisticians and others that cover topics related to the statistical 
design of experiments.  

Over the last 20 or more years, I have learned that, according to my students, one of the most 
useful parts of the course is reviewing journal papers that use DOE methods in experiments. 
Students are asked to search for journal papers in their discipline or field of interest and do a 
thorough review. This review requires that students identify the objectives of the paper, the factors 
used in the experiment, the responses measured, and the choice of experimental design. Then 
students must evaluate the correctness of the statistical analyses, and the results.  Invariably, on 
reanalysis of the data given in the paper, the students often find that the data reported may be 
wrong, the statistical model choice is wrong, or the ANOVA assumptions may not have been 
checked. Or, the students may find the results reported are not reproducible. Having students 
review published journal papers provides an opportunity to develop confidence in their knowledge 
of DOE and helps students realize that not all published papers can be taken at face value. 
Important errors in analysis or data can be missed either by the authors or reviewers despite the 
fact that many of the reviewed papers are published in reputable journals.  

Over the years, I have amassed a large collection of journal and some conference papers that use 
DOE methodologies in engineering and science. This book provides a selection of 26 case studies 
from this collection. The case studies cover a wide range of applications in engineering and 
science.  I chose only papers where there is a complete set of data available for reanalysis. The 
selection is not exhaustive and does not cover every discipline of engineering or science.  However, 
I hope that readers of the book get a good sense of the wide application of DOE methods, and will 
try their hand at analyzing the published data.  The methods most commonly used in the papers 
deal mainly with factorial designs, fractional factorial designs, and response surface 
methodologies, particularly the use of the central composite and Box-Behnken designs.   

The book is ideal for students who have taken or is taking a course in DOE. It is also useful for 
those who want to learn more about the power of DOE methods or who are looking for research 
ideas. Each dataset is available in print form in the book and available as an Excel file (.xls) and 
as a Design-Expert® file (.dxpx).  Hence this collection of case studies is also be a good resource 
for instructors of DOE. Please contact me at llye@mun.ca for the files.  

I want to thank the hundreds of students who have taken my course over the years and the feedback 
they have offered. I learned so much from interacting with them and helping them design unique 
experiments for their thesis and other research work. I would particularly like to acknowledge the 
unwavering support of Mark Anderson of Stat-Ease Inc. the publisher of Design-Expert® software, 
by providing a free 6-month version of their software to my students each year. My class has been 
using Design-Expert® as the software of choice since version 5.  There are other statistical 
packages available for DOE such as Excel Add-ins, Minitab, and JMP, but I have found Design-
Expert® to be comprehensive and easy to use. Furthermore, the company Stat-Ease Inc. provides 
excellent support through their website, YouTube channel, and regular webinars.  

Leonard Lye 
St. John’s, Newfoundland, Canada 

mailto:llye@mun.ca
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______________________________________________ 
1.  INTRODUCTION 

  

This book provides a collection of 26 case studies in the field of engineering and science based on 
articles published in a wide variety of journals from 2000 to 2018.  The methodology used in each 
study falls into one of eight types which form the eight main chapters of this book. These methods 
are:      

• General factorial designs  
• 2-level factorial designs or 2k designs 
• 2-level fractional factorial designs or 2k-p designs 
• 3-level factorial designs or 3k designs 
• Response surface methodology or RSM: Box-Behnken designs or BBD 
• Response surface methodology or RSM: Rotatable Central composite design or CCD 
• Response surface methodology or RSM: Face Centered Central composite design or FCD 
• Combination designs 

The chapter on general factorial designs has four case studies on the use of multi-factored general 
factorial design with a different number of levels for each factor. There are 10 case studies on the 
use of 2-level factorial designs, nine on 2-level fractional factorial designs, and six on 3-level 
factorial designs. There are three chapters on the use of response surface methodology or RSM 
sub-divided as follows: Box-Behnken design or BBD (eight case studies), rotatable Central 
Composite Designs or CCD (10 case studies), and face-centered designs or FCD (10 case studies). 
Rotatable and face-centered designs are in two separate chapters. Combination designs are those 
that use more than one type of design. They could be a 2-level factorial or a 2-level fractional 
factorial design, followed by a RSM design.  There are seven case studies of this type. The number 
of case studies in each chapter roughly represents the popularity of each design.   

The field of experimental design is very wide and this book only covers the most common DOE 
methodologies found in journals of science and engineering. Other DOE methodologies such as 
Latin square designs, repeated measures design, nested designs, optimal designs, space-filling 
designs, definitive screening designs, split-plot designs, mixture designs, and other less commonly 
used or more advanced methodologies are not covered.  

The case studies in this book are based on articles published in over 55 different journals and 
shows the wide application of DOE methodology in science and engineering. As mentioned in the 
Preface, only papers that contain the complete design and responses are included so that readers 
can analyse the data for themselves and compare their results with those presented in the paper. 
Naturally the list of journals is not exhaustive.  In alphabetical order, the list of journals is as 
follows. Case study and page numbers are shown for ease of reference. 

Advances in Environmental Research – CS #2.1, p 8. 

Applied Mathematical Modelling – CS #3.7, p 37. 
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Applied Stochastic Models in Business and Industry – CS #8.1, p 139. 

Applied Thermal Engineering – CS #6.3, p 96. 

ASCE Journal of Environmental Engineering – CS #6.8, p 107. 

Bioresource Technology – CS #8.5, p 150; CS #9.1, p 169; CS #9.6, p 187; CS #9.7, p 189. 

Biotechnology Progress – CS #4.2, p 48. 

Carbohydrate Polymers – CS #6.7, p 106. 

Cement and Concrete Composites – CS #6.6, p 102. 

Colloids and Surfaces A: Physicochemical Engineering Aspects – CS #7.9, p 133. 

Computers and Chemical Engineering – CS #8.7, p 156. 

Construction and Building Materials – CS #6.2, p 93. 

Desalination – CS #5.6, p 86. 

Desalination and Water Treatment – CS #3.2, p 22; CS #5.5, p 84. 

Environmental Science and Technology – CS #7.1, p 111. 

Food Chemistry – CS #7.6, p 125. 

Fuel – CS #6.1, p 91. 

Fuel Processing Technology – CS #8.4, p 148. 

IEEE Transactions on Magnetics – CS #8.4, p 148. 

Industrial Crops and Products – CS #4.9, p 70. 

International Communications in Heat and Mass Transfer – CS #8.2, p 142. 

International Journal of Food Science and Technology – CS #4.3, p 52. 

International Journal of Hydrogen Energy – CS #7.5, p 123. 

International Journal of Mining Science and Technology – CS #3.4, p 29. 

Journal on Applied Signal Processing – CS #4.7, p 65. 

Journal of ASTM International – CS #7.8, p 131. 

Journal of Biomedicine and Biotechnology – CS #9.3, p 177. 

Journal of Chemical Technology and Biotechnology – CS #9.2, p 173. 

Journal of Engineering – CS #3.9, p 41. 

Journal of Food Engineering – CS #7.3, p 118; CS # 8.8, p 160. 

Journal of Hazardous Materials – CS #7.2, p 115; CS #7.7, p 128. 

Journal of King Saud University-Engineering Sciences – CS #5.2, p 75. 
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Journal of Materials Processing Technology – CS #8.6, p 153. 

Journal of Materials Research and Technology – CS #7.4, p 120. 

Journal of Membrane Science – CS #4.1, p 45. 

Journal of Safety Research = CS #2.2, p 10. 

Journal of the Taiwan Institute of Chemical Engineers – CS #2.4, p 15. 

Journal of Water Reuse and Desalination – CS #3.6, p 35. 

Korean Journal of Chemical Engineering – CS #3.3, p 26. 

Materials and Design – CS #3.10, p 43; CS #4.4, p 55. 

Material Science and Engineering A – CS #2.3, p 13; CS #9.5, p 184. 

Materials and Manufacturing Processes – CS #6.4, p 98. 

Microbial Pathogenesis – CS #6.5, p 100. 

Numerical Heat Transfer – CS #4.5, p 60. 

Petroleum Science and Technology – CS #3.8, p 39. 

Pigment & Resin Technology – CS #8.3, p 146. 

Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management - CS #4.8, p 67. 

Proceedings Institution of Mechanical Engineers – CS #5.3, p 78. 

Promet – Traffic and Transportation – CS #3.5, p 31. 

Renewable Energy – CS #7.10, p 136. 

Separation and Purification Technology – CS #8.10, p 165. 

Surface and Coatings Technology – CS #4.6, p 63. 

The Scientific World Journal – CS #5.1, p 73. 

Total Quality Management – CS #9.4, p 181. 

Ultrasonic Sonochemistry – CS #8.9, p 162. 

Water Science and Technology – CS #3.1, p 19. 

 

In addition to the case studies presented in this book, there are also numerous other case studies 
published or available in standard text books on DOE such as Box et al (2005), Hicks et al (1999), 
Kuehl (2000), Montgomery (2017), Myers et al (2016), and Ryan (2007). There are also a few 
standard text books on science and engineering that contain case studies. These include among 
others Anthony (2003), Berthouex and Brown (2002), and Mason et al (2003). Most of these case 
studies are in the assignment sections of these books. “Simplified” books on DOE and RSM that 
focus on practical applications using the Design-Expert® software have also been published by 
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Anderson and Whitcomb (2015, 2016) who are principals at Stat-Ease Inc., publisher of the 
software. Other software for DOE and RSM besides Design-Expert include JMP by SAS, Minitab® 
by Minitab Inc., Fusion-Pro by S-Matrix, among many others.  

The case studies in each chapter of this book are arranged by alphabetical order of the first author’s 
last name. Each case study describes the objective of the experiment, the number of factors and 
responses in the experiment, the type of design used, the full data set resulting from the experiment, 
the software used, and a summary of the results obtained by the authors. I encourage the reader to 
read the original papers and re-analyze the data to compare with the results obtained by the authors. 
If you find that you obtain the same results, then congratulate yourself and the authors for correctly 
doing the analysis. If you did not get the same results, here is your opportunity to figure out why. 
Were the assumptions of regression checked?  Were the correct model terms included in the final 
model? Were you able to obtain a better model? Should there be a transformation for the  response? 
Sometimes there are differences because of the software used, and sometimes there could be 
typographical errors.  In any case, reanalyzing published data is a great learning experience.  

 

Disclaimer 

While every effort has been made to reproduce the data and tables in the published papers as 
accurately as possible, it is advisable that the reader read the original papers for the details of the 
experiments carried out and to ensure that the data and tables presented here are indeed correct.  
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______________________________________________ 
2.  GENERAL FACTORIAL DESIGNS 

 

Four case studies using general factorial designs are presented in this Chapter. The number of 
factors ranges from three to four. For each case study, the factors have a differing number of levels 
ranging from two to five levels.  

 

Case Study #2.1 

Annadurai, G., Ruey-Shin Juang, and Duu-Jong Lee (2002): Factorial design analysis for 
adsorption of dye on activated carbon beads incorporated with calcium alginate. Advances in 
Environmental Research, 6, pp. 191-198. 

This study used a factorial design with three factors to investigate the batch adsorption equilibrium 
of the dye Rhodomine 6G, using activated carbon beads incorporated with calcium alginate 
(ACCA beads). The effect of three factors that govern the adsorption process, dye concentration 
in mg/l, pH, and temperature °C were considered.  The factors and levels are shown in Table 2.1.  

Table 2.1: Factors and levels for adsorption of dye study. 

Factor Description Unit Level 1 Level 2 Level 3 
A Init. Dye Concentration Mg/l 100 200 300 
B pH  7 8 9 
C Temperature  °C 30  60 

 

The response was the percentage of adsorption of Rhodamine 6G using a fixed dosage of ACCA 
beads (1 g/l).   

Three levels of dye concentrations (100, 200, 300) and pH (7, 8, 9) were used and the temperature 
was at two levels (30 °C and 60 °C). In total there were (3 x 3 x 2 = 18) runs.  The run combinations 
and responses are shown in Table 2.2. These were taken from Tables 2 and 3 of Annadurai et al 
(2002).   

According the authors, the use of the factorial design and subsequent ANOVA allowed a 
polynomial model to be fitted, shown in Equation (1) of the paper.  The method used to calculate 
the effects and their sum of squares are given in the paper. There is no mention if any software 
was used for the ANOVA calculations.  
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Table 2.2: Operating conditions and responses (after Annadurai et al, 2002). 
 

Trial 
No.  

Dye 
Concentration 

(mg/l) pH 
Temperature 

(°C) 
% dye 

adsorption 
Predicted 
value (%) 

1 100 7 30 98.50 98.47 
2 200 7 30 96.70 96.77 
3 300 7 30 94.80 95.07 
4 100 8 30 98.70 98.71 
5 200 8 30 97.00 97.01 
6 300 8 30 95.30 95.31 
7 100 9 30 99.20 98.95 
8 200 9 30 97.30 97.25 
9 300 9 30 95.60 95.55 

10 100 7 60 99.90 99.80 
11 200 7 60 98.20 98.10 
12 300 7 60 96.40 96.40 
13 100 8 60 100.00 100.04 
14 200 8 60 98.60 98.34 
15 300 8 60 96.70 96.64 
16 100 9 60 100.00 100.02 
17 200 9 60 98.20 98.59 
18 300 9 60 97.10 96.89 

 
 
The ANOVA results were shown in Table 5 of the paper and are reproduced here as Table 2.3.  
The R2 was given as 0.9884 based on fitting a linear model.  The model was not shown in the paper 
but the authors gave the predicted values together with the actual values of the responses in Table 
4 of their paper. These predicted values are shown here in Table 2.2.  
 
Table 2.3:  Regression analysis for adsorption of dye by linear model fitting (ANOVA). Table 5 
of Annadurai et al (2002). 

Source 
Sum of 
Squares df 

Mean 
Square F-value P-value 

Model 43.38 3 14.46 396.73 <0.0001 
Residual 0.51 14 0.036   
Corr. Total 43.89 17       

R2 = 0.9884 

From Table 2.3, no interaction or quadratic terms were included in the model.  It is not mentioned 
whether the assumptions of regression were checked. The authors concluded that the initial dye 
concentration has the most significant effect while the temperature has the least effect on the 
percentage of dye adsorption.  
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Case Study #2.2 

Al-Darrab, I. A., Zahid A. Khan, and Shiekh I. Ishrat (2009): An experimental study on the effect 
of mobile phone conversation on drivers’ reaction time in braking response. Journal of Safety 
Research, 40, pp. 185-189.  

This study considered the effect of three factors on drivers’ reaction time in braking. The aim of 
the study was primarily to investigate the effect of mobile phone use on driving performance. The 
factors and levels are shown in Table 2.4: 

Table 2.4: Factors and levels for mobile phone study. 

Factor Description Unit Level 1 Level 2 Level 3 
A Distance between cars m 10 15 20 
B Call Duration s 30 60 90 
C Time of driving  Day  Night 
      

Response = RT, Drivers’ reaction time (s) 

This experiment had three levels for Factor A and B, and two levels for Factor C. The number of 
replications was three.  The total number of runs was 3 x (3 x 3 x 2) = 54. Two cars travelling at a 
given distance apart (Factor A) were used. Factor B, the call duration, refers to the time spent 
talking on a mobile phone.  For Factor C, day time is from 1600 to 1800 hours, and night time is 
from 2030 to 2230 hours. Twenty seven (27) volunteer drivers were used in the experiment where 
each driver was randomly assigned to two run combinations. The location of the study was in 
Jeddah, Saudi Arabia. The detailed experimental procedure was explained in the paper.  

Design Expert by Statease Inc. was used for the design and analysis.  The version of the software 
was not mentioned.  

The results of the experiment were given in Table 2 of the paper, and are reproduced here in Table 
2.5.  

For the initial analysis, the authors treated each factor as categorical. The ANOVA results are 
shown in Table 2.6. 
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Table 2.5: Driver’s reaction time for different treatment combinations (data from Al-Darrab et al 
(2009).  

Treatment  Factors    Reaction time (s)   
Combination      Replicate     
    A (m) B(s) C  I II III 
1  10 30 Day  0.09 0.08 0.10 
2  10 60 Day  0.25 0.09 0.18 
3  10 90 Day  0.23 0.20 0.18 
4  15 30 Day  0.20 0.12 0.09 
5  15 60 Day  0.15 0.06 0.21 
6  15 90 Day  0.22 0.15 0.17 
7  20 30 Day  0.07 0.12 0.11 
8  20 60 Day  0.09 0.07 0.11 
9  20 90 Day  0.18 0.13 0.12 
10  10 30 Night  0.12 0.35 0.20 
11  10 60 Night  0.18 0.30 0.09 
12  10 90 Night  0.46 0.19 0.29 
13  15 30 Night  0.15 0.12 0.27 
14  15 60 Night  0.18 0.15 0.12 
15  15 90 Night  0.63 0.71 0.59 
16  20 30 Night  0.17 0.14 0.12 
17  20 60 Night  0.21 0.12 0.15 
18   20 90 Night   0.90 0.76 0.71 

 

Table 2.6: Results of ANOVA for categorical variables. Results from Al-Darrab et al (2009).  

Source   Sum of Squares df   
Mean 
Square F-value P-value   

Model  1.802  17  0.106  22.12 <0.0001 Significant 
A  0.018  2  0.009  1.92 0.1612  
B  0.640  2  0.320  66.73 <0.0001  
C  0.394  1  0.394  82.12 <0.0001  
AB  0.137  4  0.034  7.12 0.0002  
AC  0.063  2  0.031  6.52 0.0038  
BC  0.380  2  0.190  39.59 <0.0001  
ABC  0.172  4  0.043  8.98 <0.0001  
Pure Error  0.173  36  0.005     
Corr Total  1.975  53       
                      

 

The assumptions of ANOVA have been checked by the authors and found to be satisfied.  Since 
Factor A and B were quantitative, the authors also considered developing prediction equations for 
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the response by re-running the ANOVA, treating Factors A and B as quantitative. The results of 
the ANOVA is shown in Table 2.7.   

Table 2.7: Results of ANOVA for quantitative Factors. Results from Al-Darrab et al (2009). 

Source   Sum of Squares df   
Mean 
Square F-value P-value   

Model  1.725  9  0.192  33.75 <0.0001 Significant 
A  0.014  1  0.014  2.40 0.1287  
B  0.490  1  0.490  86.29 <0.0001  
C  0.005  1  0.005  0.82 0.3693  
B2  0.150  1  0.150  26.35 <0.0001  
AB  0.089  1  0.089  15.64 0.0003  
AC  0.063  1  0.063  11.01 0.0018  
BC  0.250  1  0.250  44.03 <0.0001  
B2C  0.130  1  0.130  22.81 <0.0001  
ABC  0.147  1  0.147  25.93 <0.0001  
Residual  0.250  44  0.006     
Lack of Fit  0.077  8  0.010  2.02 0.0723 not significant 
Pure Error  0.173  36  0.005     
Corr Total  1.975  53       
                      

 

The most important of the three factors affecting braking reaction time is the mobile call duration 
(Factor B), followed by the time of driving (Factor C), with the distance between cars (Factor A) 
being least important. The prediction equations of the reaction time in terms of actual factors were 
given as:  

Time: Day 

RT = 0.060556 + 0.00255556 A + 0.00182407 B + 0.00000864198 B2 – 0.0001167 A.B  

Time: Night 

RT = 1.28056 – 0.0434444 A – 0.035990 B + 0.000239506 B2 + 0.000927778 A.B 

No goodness-of-fit statistics were given in the paper.  The authors also left out the statistically 
significant three-factor interaction terms to simplify the models. The results cannot be generalized 
to older drivers as the volunteer drivers were all between the ages of 22 and 24 years.  
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Case Study #2.3 

Grosselle, F., Giulio Timelli, and Franco Bonollo (2010): DOE applied to microstructural 
properties of Al-Si-Cu-Mg casting alloys for automotive applications. Material Science and 
Engineering A, 527, pp. 3536-3545. 

The basic aim of the study was to investigate the solidification rate and the effect of T7 heat 
treatment on microstructural and mechanical properties of cast AlSi7CuMg based alloy for engine 
block application. That is, by studying the effect of each factor and their interactions on the 
production of the alloy, the authors were trying to determine whether there is potential to improve 
performance of the alloy. The four factors were the cooling rate measured by the secondary 
dendrite arm spacing (SDAS), Titanium content (Ti) Copper content (Cu), and T7 heat treatment. 
The process factors with their different levels are shown in Table 2.8.  

Table 2.8: Process factors with their levels of observation. From Grosselle et al (2010). 

Factor 
designation 

Factor name Lower level Central level Higher level 

A SDAS (µm) 17 - 34 
B Titanium content (wt.%) 0 - 0.2 
C Copper content (wt.%) 2 3 4 
D T7 heat treatment 0 (no)  1 (yes) 

 

Five different responses were measured.  These were: equivalent diameter (d) and roundness (r) 
of the eutectic Si particles, yield strength (YS), ultimate tensile strength (UTS), and elongation to 
fracture (sf).  

The first two responses were obtained from microstructural analysis using an optical microscope 
and quantitatively analyzed with an image analyzer. The next three responses concerned the effects 
of the factors on strength related properties. These were obtained from a computer controlled 
tensile testing machine. The details on how the images were analyzed and how the tensile tests 
were carried out were described in the paper. 

This experiment had 2 levels for Factor A, B, and D, and 3 levels for Factor C. The total number 
of run combinations was (2 x 2 x 3 x 2) = 24. These run combinations were labelled P1 to P24 by 
the authors. Hence, a general factorial design was used.  

Table 2.9 shows the run combinations together with the five responses obtained from the 
experiments. In the paper, for each response, the corresponding standard deviation was also given. 
However, these standard deviations are not shown in Table 2.9 because they were not analyzed by 
the authors. The run combinations were given in Table 2, and the responses were given in Tables 
4 and 5 of the paper. 

The software used for the design and analysis of the experiment was not mentioned.  However, 
from the printout of the results, my guess is that the authors used Minitab.  
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Table 2.9: Run combinations and responses. Tables 2, 4 and 5 of Grosselle et al (2010). 

Run 
SDAS 
(µm) Ti  (%) Cu  (%) 

Heat 
treat 

 d 
(µm) r 

YS 
(MPa) 

UTS 
(MPa)  Sf (%) 

P01 17 0 2 0 2.3 4.1 159 210 1.3 
P02 34 0 2 0 4.6 5.4 161 204 1.1 
P03 17 0.2 2 0 2.9 4.3 137 209 1.7 
P04 34 0.2 2 0 4.8 4.7 161 214 1.3 
P05 17 0 3 0 3.3 5.1 160 212 1.1 
P06 34 0 3 0 4.5 5.2 172 210 0.0 
P07 17 0.2 3 0 4.4 6.6 171 213 0.5 
P08 34 0.2 3 0 6.3 6.3 182 225 1.1 
P09 17 0 4 0 2.7 3.9 169 242 1.4 
P10 34 0 4 0 4.5 5.4 182 218 0.9 
P11 17 0.2 4 0 4.3 3.9 187 227 0.9 
P12 34 0.2 4 0 7.5 7.1 187 207 0.7 
P13 17 0 2 1 2.9 1.7 255 292 1.4 
P14 34 0 2 1 4.2 2.9 244 272 1.1 
P15 17 0.2 2 1 3.5 2.3 261 308 1.7 
P16 34 0.2 2 1 5.3 3.5 258 278 0.9 
P17 17 0 3 1 2.8 2.0 268 305 1.2 
P18 34 0 3 1 4.1 2.5 266 289 1.0 
P19 17 0.2 3 1 4.2 2.5 260 309 1.6 
P20 34 0.2 3 1 5.4 2.5 263 296 1.1 
P21 17 0 4 1 2.6 1.7 256 316 1.7 
P22 34 0 4 1 3.7 2.5 256 284 1.0 
P23 17 0.2 4 1 4.0 2.5 279 321 1.2 
P24 34 0.2 4 1 5.7 2.6 267 289 0.9 

 

No ANOVA tables were reported in the paper. However, the main effects and some interaction 
plots and Pareto charts were given for each response.  The prediction equations using only 
statistically significant terms at α=0.05, for each response, and the corresponding R2 are given 
below.  

(i) Equivalent diameter of eutectic Si particles, d. 

d = 0.93 + 0.12 SDAS – 8.28 Ti – 0.073 Cu + 4.62 Ti.Cu        R2 = 0.82 

(ii) Roundness of eutectic Si particles, r. 

r = 1.64 + 0.07 SDAS + 3.99 Ti – 1.17 T7   R2 = 0.87 

The variable T7 is either 0 for as-cast, or 1 for T7 heat treated conditions. 
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(iii) Yield strength, YS.  

YS = 186.2 + 9.2 Cu + 45.8 T7)                R2 = 0.95 

(iv) Ultimate tensile strength, UTS. 

UTS = 263 – 1.2 SDAS + 7.3 Cu + 39.3 T7)  R2 = 0.95 

(v) Elongation to fracture, sf. 

sf = 1.83 – 0.0242 SDAS + 0.0013 Cu – 1.19 Cu.Ti + 0.0404 T7    R2 = 0.67 

The authors did not mention whether the assumptions of ANOVA were checked.  Standard 
deviations for each of the responses were reported in the paper but were not analyzed. The 
prediction equations were also not validated using additional experimental runs.  

 

Case Study #2.4 

Kordkandi, S. A. and Mojtaba Forouzesh (2014): Application of full factorial design for methylene 
blue dye removal using heat-activated persulfate oxidation. Journal of the Taiwan Institute of 
Chemical Engineers, 45, pp. 2597-2604. 

This study considered the use of a thermally activated persulfate oxidation process to treat aqueous 
methylene blue (MB) dye. Four factors which include reaction time, persulfate concentration, 
initial MB concentration, and process temperature were investigated.  The factors and levels used 
are shown in Table 2.10.  

Table 2.10: Levels and factors used in the experimental design  (adapted from Kordkandi and 
Farouzesh, 2014) 
        

Factors Operating variables Units Levels 

    1 2 3 4 5 
t Reaction time min 5 10 15 20 25 

COX Persulfate concentration mg/L 355 710 1065 - - 

CMB Initial MB concentration mg/L 10 15 20 - - 
T Process temperature  (℃) 60 70 - - - 

 

The response variable was the percentage color removal efficiency (CR%).  From the experimental 
data, activation energy and kinetic parameters were also calculated and a model was proposed for 
predicting the performance of the color removal percentage. The details of the experiments and 
how they were carried out were well explained in the paper. 

From Table 2.10, reaction time (t, min) has 5 levels (5, 10, 15, 20, and 25), persulfate concentration 
(COX, mg/l) has 3 levels (355, 710, and 1065), initial MB concentration (CMB, mg/l) has 3 levels 
(10, 15, and 20) and the process temperature (T, °C) was at 2 levels (60 and 70).  The total number 
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of runs is hence (5 x 3 x 3 x 2) = 90. The data were not given in the paper but have been generously 
provided herein by the authors. The full dataset is given in Table 2.11.  

Minitab 16 was used by the authors to analyze the data and a first order of the form shown below 
(Equation 9 of Kordkani and Forouzesh, 2014), was fitted to the data.  

𝑌𝑌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏0 + ∑ 𝑏𝑏𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖 + ∑𝑛𝑛

𝑖𝑖=1 ∑ 𝑏𝑏𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑗𝑗=1 𝑥𝑥𝑗𝑗 + ⋯, 

where Y is the CR% and xi, xj, … are coded variables, b0 is the global mean, and bi, bij, are 
estimated regression coefficients for the main and interaction effects. The adjusted R2 was used as 
a model selection criterion.  

Based on a significance level of 5%, the authors suggested the following prediction equation 
(Equation 10 in the paper) for CR%: 

CR% = 14.393 + 1.233 t – 11.806 COX + 1.064 CMB + 5.525 T + 2.18 t.COX – 1.365 t.CMB  

   + 3.64 t.T + 9.62 T.COX – 4.2 T. CMB, 

where all the terms are defined in Table 2.10.  The corresponding ANOVA results of the proposed 
model are shown in Table 2.12.  

Table 2.12: ANOVA for proposed model (Table 5 of Kordkandi and Forouzesh, 2014) 

Source 
Degree of 
freedom 

Sum of 
Squares 

Mean 
Square Fo P-value 

Regression 9 42,644.10 4738.23 214.875 0.000 
Residual Error 80 1,764.10 22.05 - - 
Total 89 44,408.20 - - - 

 

The model has a standard deviation of 4.7, Durbin-Watson statistic = 1.61, R2 = 96%, and R2 
(adjusted) = 95.6%.  The authors did not consider any three-factor interaction or quadratic terms 
in the proposed model.   

It is important to note that the prediction equation given above (Equation 10 in the paper), was 
based on the levels used rather than the actual values in the experiment. For example, to predict 
CR% say at the low level for all factors, then the value of 1 must be used for t, COX, CMB, and T, 
and not 5 min, 355 mg/L, 10 mg/L, and 60 °C, respectively. It is suggested that the reader redo the 
regression using the actual values rather than using the levels so that the prediction equation can 
be used directly in terms of actual values without the need to convert levels into actual values. The 
prediction equations were also not validated using additional experimental runs.  
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Table 2.11: Run combinations and responses (data provided by S. A. Kordkandi via personal 
communications).  

Run 
Reaction Time 

(min) 
Initial Oxidant 
Conc. (mg/l) 

Initial Dye 
Conc. (mg/l) Temp. ( C) CR% 

1 1 1 1 1 14.6 
2 1 1 1 2 33.5 
3 1 1 2 1 12.4 
4 1 1 2 2 20.4 
5 1 1 3 1 10.6 
6 1 1 3 2 19.5 
7 1 2 1 1 17.8 
8 1 2 1 2 40.6 
9 1 2 2 1 14.1 

10 1 2 2 2 29.3 
11 1 2 3 1 12.0 
12 1 2 3 2 27.1 
13 1 3 1 1 20.5 
14 1 3 1 2 48.6 
15 1 3 2 1 16.0 
16 1 3 2 2 33.5 
17 1 3 3 1 10.5 
18 1 3 3 2 30.6 
19 2 1 1 1 26.1 
20 2 1 1 2 48.5 
21 2 1 2 1 18.8 
22 2 1 2 2 33.3 
23 2 1 3 1 17.3 
24 2 1 3 2 29.2 
25 2 2 1 1 28.7 
26 2 2 1 2 66.2 
27 2 2 2 1 22.4 
28 2 2 2 2 43.3 
29 2 2 3 1 16.6 
30 2 2 3 2 39.0 
31 2 3 1 1 33.0 
32 2 3 1 2 74.4 
33 2 3 2 1 27.2 
34 2 3 2 2 56.4 
35 2 3 3 1 20.0 
36 2 3 3 2 51.6 
37 3 1 1 1 34.3 
38 3 1 1 2 59.4 
39 3 1 2 1 25.9 
40 3 1 2 2 38.8 
41 3 1 3 1 21.4 
42 3 1 3 2 33.7 
43 3 2 1 1 37.1 
44 3 2 1 2 81.1 
45 3 2 2 1 29.3 
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Run 
Reaction Time 

(min) 
Initial Oxidant 
Conc. (mg/l) 

Initial Dye 
Conc. (mg/l) Temp. ( C) CR% 

46 3 2 2 2 52.2 
47 3 2 3 1 22.1 
48 3 2 3 2 51.8 
49 3 3 1 1 43.1 
50 3 3 1 2 89.7 
51 3 3 2 1 35.1 
52 3 3 2 2 71.8 
53 3 3 3 1 25.7 
54 3 3 3 2 65.2 
55 4 1 1 1 39.6 
56 4 1 1 2 65.4 
57 4 1 2 1 27.6 
58 4 1 2 2 43.2 
59 4 1 3 1 23.8 
60 4 1 3 2 38.5 
61 4 2 1 1 45.3 
62 4 2 1 2 88.5 
63 4 2 2 1 35.0 
64 4 2 2 2 60.1 
65 4 2 3 1 25.7 
66 4 2 3 2 59.3 
67 4 3 1 1 51.7 
68 4 3 1 2 95.9 
69 4 3 2 1 42.8 
70 4 3 2 2 82.4 
71 4 3 3 1 31.6 
72 4 3 3 2 74.6 
73 5 1 1 1 44.0 
74 5 1 1 2 70.6 
75 5 1 2 1 30.4 
76 5 1 2 2 46.8 
77 5 1 3 1 26.1 
78 5 1 3 2 44.1 
79 5 2 1 1 50.0 
80 5 2 1 2 92.6 
81 5 2 2 1 38.3 
82 5 2 2 2 67.1 
83 5 2 3 1 29.5 
84 5 2 3 2 66.1 
85 5 3 1 1 60.0 
86 5 3 1 2 99.1 
87 5 3 2 1 49.9 
88 5 3 2 2 88.6 
89 5 3 3 1 36.3 
90 5 3 3 2 81.5 

Note that all factors are in terms of the levels used and not the actual units. 
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______________________________________________ 
3. 2-LEVEL FACTORIAL DESIGNS 

 

10 case studies using 2-level or 2k full factorial designs are presented in this Chapter, where k is 
the number of factors. The number of factors ranges from three to five. 2k designs are one of the 
most popular experimental designs because they use only two levels (a low and a high value). 
Center points may also be included to test for curvature and to give a measure of pure error. For 
five or more factors it is more economical to use fractional factorial designs (Chapter 4). The 2k 
designs allow the fitting of only linear and interaction terms. 

 

Case Study #3.1 

Alimi, F., Ali Boubakri, Mohamed M. Tlili, and Mohamed Ben Amor (2014): A comprehensive 
factorial design study of variables affecting CaCO3, scaling under magnetic water treatment. Water 
Science and Technology, 70.8, pp 1355-1361.  

This study used a three-factor two-level (23) full factorial design to investigate the effects of 
magnetic water treatment (MWT) to prevent calcium carbonate (CaCO3) scaling for domestic and 
industrial equipment. The three factors studied were pH, flow rate, and application of magnetic 
field. The factors and levels used were shown in Table 1 of the paper and are reproduced here as 
Table 3.1.  

Table 3.1: Coded levels and actual values of factors used in the design. Table 1 of Alimi et al 
(2014). 
 

 

Three responses were of interest – induction time (IT), total precipitation (TP) rate, and 
homogenous precipitation (HP) rate of CaCO3 scale from hard water.  The materials and methods 
used in the experiment were described in the paper.  Minitab 15 statistical software was used for 
the design and analysis of the experiment.  The 23 full factorial design and results of the three 
responses were shown in Table 2 of the paper are reproduced here as Table 3.2.  The pH and 
flowrate were numeric factors while the application of magnetic field was a categorical factor. 
Two center points per category were added giving a total of 12 (eight factorial plus 4 center points) 
combinations.  

Low Central 
Variable Symbol (-1) point (0) High (1)
pH (numeric) X1 6 6.75 7.5
Flow rate, Q L/min) X2 0.54 0.74 0.94
(numeric)
Magnetic field (text) X3 With Without

Real values of coded levels
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Table 3.2: Experimental matrix design and results obtained for each of the studied response 
variables. Table 2 of Alimi et al (2014). 
 

 

 

From Table 3.2, IT ranged from 2 to 18 minutes, TP ranged from 72.5% to 91.9%, and HP ranged 
from 13.4 to 52.4%. A first order polynomial regression model was fitted to each response.  The 
effects, regression coefficient estimates, associated p-values, and goodness of fit statistics for all 
three responses were shown in Table 3 of the paper and are reproduced here as Table 3.3. Selecting 
regression coefficients that were statistically significant at the 5% level, the following empirical 
models in terms of coded values were obtained: 

 
Model for IT: 
 

IT = 8.8375 – 4.375 X1 – 1.875 X2 – 1.625 X1X3 
 
Model for TP rate: 
 

TP = 79.237 + 2.337 X1 – 6.308 X3 – 2.337 X1X3 
 
 
Model for HP rate: 
 

HP = 37.925 + 8.200 X1 + 8.550 X2 – 2.558 X3 – 3.725 X1X2 + 1.075 X1X3 
 
However, no goodness of fit statistics were given for these reduced models.  Also note that except 
for TP, the models for IT and HP were not hierarchical. Not maintaining hierarchy is not wrong 
per se, but justification for it should perhaps be given.  
 

Run
number Actual Coded Actual Coded Actual Coded IT (min) TP (%) HP (%)

1 6 -1 0.54 -1 With -1 14 79.2 21.5
2 7.5 1 0.54 -1 With -1 5 89.4 42.6
3 6 -1 0.94 1 With -1 7 83.4 45.0
4 7.5 1 0.94 1 With -1 5 91.9 52.4
5 6 -1 0.54 -1 Without 1 18 72.5 13.4
6 7.5 1 0.54 -1 Without 1 4 72.5 40.0
7 6 -1 0.94 1 Without 1 12 72.5 39.0
8 7.5 1 0.94 1 Without 1 2 72.5 49.5
9 6.75 0 0.74 0 With -1 9 82.8 35.0
10 6.75 0 0.74 0 Without 1 13 72.5 29.4
11 6.75 0 0.74 0 With -1 11 84 34.0
12 6.75 0 0.74 0 Without 1 14 72.5 28.5

Input variables Responses
pH Q (L/min) Magnetic field
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Table 3.3: Estimated effect and coefficients for (a) IT, (b) TP, and (c) HP. Table 3 of Alimi et al 
(2014). 
 

 
 

Model term Effect Coefficient S.E. p-value
(a) For IT (Y1)
Constant 8.375 0.4948 <0.000
X1 -8.750 -4.375 0.4948 <0.003
X2 -3.750 -1.875 0.4948 <0.032
X3 2.000 1.000 0.404 0.090
X1X2 2.750 1.375 0.4948 0.069
X1X3 -3.250 -1.625 0.4948 <0.046
X2X3 -0.250 -0.125 0.4948 0.817
X1X2X3 -0.750 -0.375 0.4948 0.504
S=1.39940 PRESS = 728.277
R2 = 97.80% R2 (pred) = 0.00% R2 (adj) = 91.93%

(b) For TP rate (Y2)
Constant 79.237 0.4628 <0.000
X1 4.675 2.337 0.4628 <0.015
X2 1.675 0.838 0.4628 0.168
X3 -12.617 -6.308 0.3779 <0.000
X1X2 -0.425 -0.213 0.4628 0.677
X1X3 -4.675 -2.337 0.4628 <0.015
X2X3 -1.675 -0.838 0.4628 0.168
X1X2X3 0.425 0.213 0.4628 0.677
S=1.30900 PRESS = 865.150
R2 = 99.12% R2 (pred) = 0.00% R2 (adj) = 96.79%

(c) For HP rate (Y3)
Constant 37.925 0.2224 <0.000
X1 16.400 8.200 0.2224 <0.000
X2 17.100 8.550 0.2224 <0.000
X3 -5.117 -2.558 0.1816 <0.001
X1X2 -7.450 -3.725 0.2224 <0.000
X1X3 2.150 1.075 0.2224 <0.017
X2X3 0.450 0.225 0.2224 0.3860
X1X2X3 -0.600 -0.300 0.2224 0.2700
S=0.628932 PRESS = 301.158
R2 = 99.92% R2 (pred) = 78.89% R2 (adj) = 99.69%
Coefficients are given in coded units. S.E.: standard error coefficient;
S: standard deviation; PRESS: Prediction Error Sum of Squares.
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The addition of center points allow for estimating pure errors and test for curvature. The test for 
curvature was not mentioned in the paper.  

Reanalysis of the data using Design-Expert 12 showed that the curvature was highly statistically 
significant for IT (p-value = 0.0072), and HP (p-value = 0.0004). The regression equation 
suggested for IT is missing the X1X2 term. Furthermore, the standard errors, p-values, and 
goodness of fit statistics for all responses were quite different compared to those shown in Table 
3.3. The predicted R2 values for IT and TP were very likely to be in error as they should not be 
0.00%.  

 

Case Study #3.2 

Berrama, T., N. Benaouag, F. Kaouah, and Z. Bendjama (2013): Application of full factorial 
design to study the simultaneous removal of copper and zinc from aqueous solution by liquid-
liquid extraction. Desalination and Water Treatment, 51, pp. 2135-2145. 

This study used a five-factor two level (25) full factorial design to investigate the removal of zinc 
and copper by liquid-liquid extraction. Liquid-liquid extraction is a widely used method for 
recovering heavy metals. The details of the method was described in the paper.  Five factors that 
affect the extraction process were the pH of the initial solution, the initial concentration of the 
metal (Zn or Cu), the concentration of the extractant, the medium type of initial aqueous solution, 
and the stirring rate. The factors and levels used in the experiment were shown in Table 1 of the 
paper and are reproduced here as Table 3.4. The experimental procedure and materials used were 
described in the paper. 

Table 3.4: Design factors and their levels. Table 1 of Berrama et al (2013). 
 

 
Two responses were of interest – percentage removal of zinc (II) (YZn), and the percentage removal 
of Copper (II) (YCu).  

The full-factorial design with 5 factors required 32 runs.  No center points were added.  There was 
no mention of any statistical software used for the design or analysis of the experiment. The 
experimental design in terms of coded factors and results were shown in Table 2 of the paper and 
are reproduced here as Table 3.5. 

 

Control factors Code Unit
Low (-1) High (+1)

pH of initial solution X1 4.5 6.5
Initial concentration of metal [(Zn)0 or (Cu)0] X2 mg/L 25 75
Concentration of extractant (D2EHPA) X3 (% vol.) 5 10
Medium type of initial aqueous solution X4 Sulphate Chloride
Stirring rate X5 rpm 400 500

Factor levels
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Table 3.5: Experimental design matrix and results. Table 2 of Berrama et al (2013). 

 
A standard first order polynomial regression model was fitted to each of the responses and all 31 
effects and the overall mean were estimated. The estimated effects, regression coefficients and 
associated t-values and p-values were shown in Table 3 of the paper and are reproduced here as 
Table 3.6. 

 

Run
X1 X2 X3 X4 X5 YZn YCu

1 -1 -1 -1 -1 -1 90.1 96.5
2 1 -1 -1 -1 -1 93.4 96.7
3 -1 1 -1 -1 -1 83.7 96.1
4 1 1 -1 -1 -1 85.9 96.8
5 -1 -1 1 -1 -1 96.7 98.4
6 1 -1 1 -1 -1 97.0 98.8
7 -1 1 1 -1 -1 93.7 98.5
8 1 1 1 -1 -1 98.3 98.8
9 -1 -1 -1 1 -1 95.9 95.8
10 1 -1 -1 1 -1 97.2 95.9
11 -1 1 -1 1 -1 95.0 95.3
12 1 1 -1 1 -1 96.6 99.5
13 -1 -1 1 1 -1 99.3 98.4
14 1 -1 1 1 -1 99.0 98.6
15 -1 1 1 1 -1 91.9 98.1
16 1 1 1 1 -1 97.3 98.2
17 -1 -1 -1 -1 1 98.0 96.1
18 1 -1 -1 -1 1 94.8 96.7
19 -1 1 -1 -1 1 88.0 96.0
20 1 1 -1 -1 1 94.5 97.4
21 -1 -1 1 -1 1 97.0 94.3
22 1 -1 1 -1 1 97.0 98.2
23 -1 1 1 -1 1 89.5 98.5
24 1 1 1 -1 1 93.4 98.9
25 -1 -1 -1 1 1 94.4 96.2
26 1 -1 -1 1 1 95.4 96.7
27 -1 1 -1 1 1 89.3 95.7
28 1 1 -1 1 1 88.1 98.4
29 -1 -1 1 1 1 98.0 98.5
30 1 -1 1 1 1 96.8 98.5
31 -1 1 1 1 1 85.8 98.0
32 1 1 1 1 1 90.1 98.2

Factor Response
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Table 3.6: Estimated effects and student's t-test for the yield of Zn(II) and Cu(II) using 25 full 
factorial design. Table 3 of Berrama et al (2013). 
 

 
For Zn(II) removal, the following prediction model was suggested (Equation 4 of the paper):  

YZn = 93.78 + 0.89X1 – 2.64X2 + 1.26X3 + 0.60X4 – 0.65X5 + 0.81X1X2 - 0.83X2X5  
         – 0.87 X3X4 - 0.95X3X5 – 1.49X4X5 – 0.80X2X3X4 + 0.99X3X4X5 

 

Variable Effect t-value p-value Effect t-value p-value
Mean 93.78 320.20 3.20E-37 97.39 1015.00 8.90E-36
X1 0.89 3.04 0.00336 0.50 5.252 6.10E-05
X2 -2.46 -8.42 3.90E-08 0.25 2.626 0.00997
X3 1.26 4.32 0.00018 0.78 8.138 5.60E-07
X4 0.60 2.04 0.02787 0.10 1.075 0.15025
X5 -0.65 -2.23 0.01901 -0.13 -1.320 0.10356
X1X2 0.81 2.79 0.00591 0.13 1.355 0.09839
X1X3 0.17 0.59 0.28212 -0.15 -1.550 0.07163
X1X4 -0.21 -0.71 0.2417 0.01 0.117 0.45415
X1X5 -0.26 -0.89 0.19346 0.11 1.160 0.13276
X2X3 -0.08 -0.29 0.3882 -0.03 -0.370 0.35795
X2X4 -0.15 -0.52 0.30358 -0.08 -0.870 0.20038
X2X5 -0.83 -2.83 0.00538 0.11 1.166 0.13148
X3X4 -0.87 -2.98 0.00388 0.02 0.228 0.41145
X3X5 -0.95 -3.23 0.00219 -0.16 -1.650 0.06075
X4X5 -1.49 -5.09 3.30E-05 0.15 1.544 0.07241
X1X2X3 0.40 1.36 0.09565 -0.34 -3.544 0.00162
X1X2X4 -0.23 -0.80 0.21674 0.28 2.893 0.0059
X1X2X5 0.24 0.82 0.21076 -0.14 -1.510 0.07643
X1X3X4 0.17 0.59 0.28212 -0.28 -2.920 0.00561
X1X3X5 0.07 0.25 0.40439 0.11 1.173 0.13021
X1X4X5 -0.06 -0.20 0.42076 -0.19 -1.940 0.03628
X2X3X4 -0.80 -2.72 0.00678 -0.33 -3.410 0.00212
X2X3X5 -0.37 -1.27 0.10977 0.17 1.779 0.04849
X2X4X5 -0.46 -1.59 0.0642 -0.24 -2.510 0.01252
X3X4X5 0.99 3.38 0.00156 0.14 1.414 0.08961
X1X2X3X4 0.42 1.44 0.08302 -0.04 -0.460 0.32765
X1X2X3X5 -0.28 -0.95 0.17713 -0.05 -0.480 0.31857
X1X2X4X5 -0.41 -1.40 0.08916 0.04 0.469 0.32309
X1X3X4X5 0.00 -0.01 0.4958 -0.04 -0.430 0.33685
X2X3X4X5 0.44 1.50 0.07446 -0.06 -0.680 0.25252
X1X2X3X4X5 0.42 1.44 0.08302 0.19 1.981 0.0338

Removal of Zn Removal of Cu
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For Cu(II) removal, the following prediction model was suggested (Equation 5 of the paper): 
 

YCu = 97.39 + 0.50X1 + 0.25X2 + 0.78X3 - 0.34X1X2X3 + 0.28X1X2X4 – 0.28X1X3X4  
          – 0.33X2X3X4 – 0.24X2X4X5 

 
The R2 values for YZn and YCu were 0.908 and 0.814, respectively. No other goodness of fit 
statistics were given. Apparently, only coefficients that were statistically significant at the 5% were 
selected to be in the model. For YCu,  X1X4X5, X2X3X5, and X1X2X3X4X5 should also be in the 
model as their p-values were less than 5%. Also note that both models were not hierarchical. The 
summarized ANOVA results for the two responses were shown in Table 4 of the paper and are 
reproduced here as Table 3.7.  
 
Table 3.7: ANOVA models. Table 4 of Berrama et al (2013). 
 

 
 

The interpretation of the results were given in the paper using a variety of interaction plots. As 
shown by the prediction equations, the importance of the main and interaction effects were quite 
different for zinc and for copper removal.  

To test the accuracy of the models, two additional experiments were conducted to compare 
predictions obtained by the models and with those obtained experimentally.  However, levels used 
for the factors were not mentioned. The results were shown in Table 5 of the paper and are 
reproduced here as Table 3.8.   

Table 3.8: Comparison between the experimental and simulated values. Table 5 of Berrama et al 
(2013). 
 

 
The results showed that the error of prediction were less than 2% and the removal percentages 
were over 95%.  

 

Source Zn(II) Cu(II)
Degree of freedom Sum of square Mean of square Degree of freedom Sum of square Mean of square

Model 12 515.304 42.942 8 43.5947 5.4493375
Residual 19 52.158 2.745 23 9.9341875 0.4319212
Total 31 567.462 18.305 31 53.5288875 1.72673831
F-ratio 15.64 12.61
p-value 2.26619E-07 9.01885E-07
R2 0.908 0.814

Experimental value Model response Error (%)
Cu(II) 99.22 98.28 0.95

99.07 98.08 1.07
Zn(II) 95.56 95.52 0.99

96.98 95.34 1.69
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Case Study #3.3 

Boubakri, A., Nawel Helali, Mohamed Tlili, and Mohamed Ben Amor (2014): Fluoride removal 
from diluted solutions by Donnan analysis using full factorial design. Korean Journal of 
Chemical Engineering, 31(3), pp. 461-466.  

This study used a four-factor two-level (24) full factorial design to investigate the influence of 
different physico-chemical factors on fluoride removal efficiency and fluoride flux from diluted 
solutions using Donnan dialysis.  Fluoride occurs naturally in the public water supply system and 
is one of the chemical compounds that has significant health effects through drinking water at 
excessive concentrations. The four factors and their levels investigated and were shown in Table 
1 of the paper and are reproduced here as Table 3.9.  

Table 3.9: Experimental range and levels of independent variables. Table 1 of Boubakri et al 
(2014). 
 

 
The two responses of interest were the fluoride removal efficiency (YF in %) and the fluoride flux 
(JF in mg/cm2.h). The materials and methods used in the experiment were described in the paper.   

The full-factorial design with 4 factors required 16 runs.  Four center points were added for 
estimating pure error and testing for curvature. The total number of run combinations was 20. 
Minitab 15 statistical software was used for the design and analysis of the experiment. The 
experimental design in terms of actual factors and results were shown in Table 2 of the paper and 
are reproduced here as Table 3.10.  

From Table 3.10, the fluoride efficiency ranged from 34.14% to 75.52% and fluoride flux ranged 
from 0.196 and 2.4 mg/cm2.h.  All 14 estimated effects, regression coefficients, and their 
associated p-values for both fluoride removal efficiency and fluoride flux were shown in Table 2 
and 3 of the paper, respectively.  These tables are reproduced here as Tables 3.11 and 3.12, 
respectively. The R2 values for both responses were for the full factorial model.  

The authors used the p-values from Tables 3.11 and 3.12 and Pareto charts to select the final 
prediction models.  For YF, the final model in terms of coded factors was given as (Equation 4 in 
the paper): 

          YF = 58.112 – 6.472C + 3.391A + 6.18T – 2.5C.Q + 1.863Q.T + 2.808 C.Q.T + 2.999 C.A.T 

 

 

Variable
-1 0 1

C (mg/L) 5 10 15
Q (L/h) 0.4 0.7 1
A (rpm) 167 500 833
T (°C) 25 30 35

Real values of coded levels



27 
 

For JF, the final model in terms of coded factors was given as (Equation 5 in the paper): 

          JF = 0.846 + 0.340C + 0.367Q + 0.060A + 0.142T + 0.119C.Q + 0.046C.A + 0.124 C.T 
                  + 0.114Q.T + 0.122C.Q.T + 0.044 C.A.T 
 
No goodness of fit statistics were reported for these reduced equations. Also note that these 
equations were not hierarchical.  There was no mention of whether curvature was tested as part of 
the analysis or if any regression assumptions checks were made. 
 

Table 3.10: Full factorial design matrix for fluoride removal efficiency. Table 2 of Boukakri et al 
(2014). 
 

 
Reanalysis of the data using Design-Expert 12 gave similar but not identical results.  The standard 
errors of the estimated coefficients and associated p-values were quite different. However, in 
general the estimated regression coefficients were similar in magnitude and the models chosen by 
the authors gave good results. 

 
 
 
 
 

Run C Q A T YF JF

(mg/L) (L/h) (rpm) (°C) (%) (mg/cm2.h)
1 5 0.4 167 25 45.40 0.196
2 15 0.4 167 25 52.27 0.680
3 5 1 167 25 58.26 0.690
4 15 1 167 25 34.14 1.060
5 5 0.4 833 25 64.38 0.270
6 15 0.4 833 25 50.64 0.660
7 5 1 833 25 67.79 0.800
8 15 1 833 25 42.58 1.280
9 5 0.4 167 35 66.74 0.284
10 15 0.4 167 35 47.92 0.630
11 5 1 167 35 75.52 0.800
12 15 1 167 35 57.96 1.950
13 5 0.4 833 35 69.33 0.280
14 15 0.4 833 35 63.24 0.830
15 5 1 833 35 69.26 0.730
16 15 1 833 35 64.81 2.400
17 10 0.7 500 30 57.98 0.840
18 10 0.7 500 30 60.49 0.920
19 10 0.7 500 30 61.05 0.920
20 10 0.7 500 30 56.48 0.850
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Table 3.11: Estimated effects and coefficients for fluoride removal efficiency (coded units). Table 
3 of Boubakri et al (2014). 
 

 
 
Table 3.12: Estimated effects and coefficients for fluoride flux (coded units). Table 4 of Boubakri 
et al (2014). 
 

 

Term Effect Coefficient S.E. coef P-value
Constant 58.112 0.5365 0.000
C -12.945 -6.473 0.5365 0.001
Q 1.245 0.623 0.5365 0.330
A 6.783 3.392 0.5365 0.008
T 12.360 6.180 0.5365 0.001
C*Q -5.000 -2.500 0.5365 0.019
C*A 0.572 0.286 0.5365 0.631
C*T 1.105 0.553 0.5365 0.379
Q*A -2.032 -1.016 0.5365 0.154
Q*T 3.725 1.863 0.5365 0.040
A*T -2.542 -1.271 0.5365 0.152
C*Q*A 2.615 1.308 0.5365 0.099
C*Q*T 5.615 2.808 0.5365 0.014
C*A*T 5.998 2.999 0.5365 0.011
Q*A*T -2.188 -1.094 0.5365 0.134
C*Q*A*T -2.337 -1.169 0.5365 0.117
R-sq = 0.9932

Term Effect Coefficient S.E. coef P-value
Constant 0.846 0.01087 0.000
C 0.680 0.340 0.01087 0.000
Q 0.735 0.368 0.01087 0.000
A 0.120 0.060 0.01087 0.012
T 0.283 0.142 0.01087 0.001
C*Q 0.237 0.119 0.01087 0.002
C*A 0.092 0.046 0.01087 0.024
C*T 0.249 0.125 0.01087 0.001
Q*A 0.057 0.029 0.01087 0.077
Q*T 0.229 0.115 0.01087 0.002
A*T 0.024 0.012 0.01087 0.350
C*Q*A 0.065 0.033 0.01087 0.058
C*Q*T 0.243 0.122 0.01087 0.002
C*A*T 0.088 0.044 0.01087 0.027
Q*A*T -0.011 -0.006 0.01087 0.634
C*Q*A*T 0.014 0.007 0.01087 0.566
R-sq = 0.9990
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Case Study #3.4 

Golshani, T., Jorjani, E., Chelgani S. Chehreh, Shafaei, S. Z., and Nafechi Y. Heidari (2013): 
Modeling and process optimization for microbial desulfurization of coal by using a two-level 
full factorial design. International Journal of Mining Science and Technology, 23, pp. 261-265. 
 

This study used a five-factor two-level (25) full factorial design to model and optimize coal 
microbial desulfurization conditions from the Tabas coal preparation plant in Iran. The goals of 
the study were to determine the effects and interactions on the total sulfur reduction and to 
maximize the reduction of sulfur from high sulfur content coal samples. The five factors and their 
levels used in the experiment were shown in Table 2 of the paper and are reproduced here as Table 
3.13.  

Table 3.13: Variables, symbols, and levels used for full factorial design. Table 2 of Golshani et al 
(2013). 
 

 

The response of interest was the sulfur reduction (%).  The methods and materials used in the 
experiment were described in the paper.  Design-Expert 7.0 statistical software was used for the 
design and analysis of the experiment. The full-factorial design with 5 factors required 32 runs.  
The experimental design in terms of actual factors and results were shown in Table 3 of the paper 
and are reproduced here as Table 3.14.  

The response ranged from 22.47% to 53.12%.  The authors used a half-normal plot of effects to 
select the significant effects for the prediction model. The final suggested model (Equation 3 in 
the paper) in actual factors was given as: 

        log10(sulfur reduction) = 1.4379 – 0.06128 pH – 1.18057 x 10-4 particle size  
                                                + 8.44246 x 10-3 pulp density + 0.21607 time 
 

The ANOVA results for the above reduced first order model were shown in Table 4 of the paper 
and are reproduced here as Table 3.15. The results were in log base 10 units. As can be seen from 
the ANOVA results, all terms were statistically significant at the 5% level.  Factor C (Fe2+) was 
not statistically significant at the 5% level and no two-factor interaction terms were included. The 
goodness of fit statistics showed that this model had a R2 of 91.19% and a adjusted R2 of 89.89%.  

 
 

Variable Symbol Lowe level Center level High level
-1 0 1

pH A 1.5 2.0 2.5
Particle size (µm) B 180 340 500
Fe2+ (mmol) C 0 30 60
Pulp density (%) D 2 6 10
Leaching time (d) E 6 10 14
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Table 3.14: Results of experiments for sulfur removal in different operating levels regard to full 
factorial design. Table 3 of Golshani et al (2013). 
 

 

Reanalysis of the data using Design-Expert 12 obtained identical results to those reported. 
However, a better model can be obtained without transforming the response and including the C, 
CD, and CE which were all statistically significant at the 5% level.  Furthermore, the predicted R2 
would increase from 0.876 to 0.913. Hence all five main effects were statistically significant at the 
5% level and there were two two-factor interaction terms.  Concluding that Factor C (Fe2+) was 
not statistically significant may be in error.  

 

 

Test No. Run pH Particle size (µm) Fe2+ (mmol) Pulp density (%) Time (d) Sulfur reduction (%)
1 1 1.5 180 0 2 6 29.76
2 11 2.5 180 0 2 6 25.56
3 25 1.5 500 0 2 6 28.87
4 2 2.5 500 0 2 6 24.65
5 30 1.5 180 60 2 6 29.75
6 18 2.5 180 60 2 6 24.35
7 10 1.5 500 60 2 6 26.24
8 5 2.5 500 60 2 6 22.47
9 32 1.5 180 0 10 6 34.52
10 24 2.5 180 0 10 6 29.85
11 29 1.5 500 0 10 6 35.88
12 21 2.5 500 0 10 6 25.36
13 8 1.5 180 60 10 6 34.26
14 3 2.5 180 60 10 6 34.62
15 27 1.5 500 60 10 6 31.35
16 12 2.5 500 60 10 6 24.08
17 26 1.5 180 0 2 14 42.31
18 7 2.5 180 0 2 14 38.03
19 6 1.5 500 0 2 14 40.76
20 31 2.5 500 0 2 14 35.31
21 19 1.5 180 60 2 14 42.88
22 20 2.5 180 60 2 14 39.27
23 9 1.5 500 60 2 14 39.92
24 16 2.5 500 60 2 14 37.53
25 15 1.5 180 0 10 14 48.47
26 28 2.5 180 0 10 14 38.50
27 17 1.5 500 0 10 14 43.78
28 13 2.5 500 0 10 14 37.58
29 22 1.5 180 60 10 14 53.12
30 14 2.5 180 60 10 14 51.97
31 23 1.5 500 60 10 14 48.82
32 4 2.5 500 60 10 14 46.82



31 
 

Table 3.15: Analysis of variance for sulfur reduction. Table 4 of Golshani et al (23013). 
 

 
The authors then used the optimization routine in Design-Expert 7 together with the developed 
model to determine the conditions that will maximize sulfur reduction.  The optimum conditions 
obtained were pH of 1.5, particle size of 180 µm, iron sulfate concentration of 2.67 (mmol/L), pulp 
density of 10%, and bioleaching time of 14 days.  The predicted sulfur reduction was 51.47%. The 
experimental result at these optimal conditions was 52.89%.   

Since the iron sulfate concentration factor was not statistically significant according to the author’s 
model, it could have been set to 0 instead of 2.67.  

 

Case Study #3.5 

Khademi, A., Nafiseh G. Renani, Maryam Mofarrahi, Alireza Rangraz Jeddi, and Noordin M. 
Yusof (2013): The best location for speed bump installation using experimental design 
methodology. Promet – Traffic and Transportation, Vol. 25, No. 6, pp. 565-574. 

This study used a four-factor two-level (24) full factorial design to determine the optimum location 
to install speed bumps before stopping points along a road to control traffic speeds through critical 
areas. Speed bumps are well-known traffic calming techniques used around the world. The factors 
and levels considered in this study are shown in Table 3.16.  

Table 3.16: Factors and levels used in the speed bump installation experiment. 
 

 

The response was supposed to be the speed at the stop point. However, due to the lack of a proper 
speed measurement instrument, the time in seconds taken between the bump and the stop point 
was taken as the response.  The experimental procedure used was described in the paper. A two-
level full factorial design with four factors would require 16 run combinations.  The authors 

Source Sum of squares df Mean square F value p-value
Model 0.320 4 0.079 69.89 <0.0001 S
A-pH 0.030 1 0.030 26.50 <0.0001
B-Particle size 0.011 1 0.011 10.07 0.0037
D-Pulp density 0.036 1 0.036 32.18 <0.0001
E-Time 0.240 1 0.240 210.82 <0.0001
Residual 0.031 27 1.13E-03
Cor total 0.350 31
S: significant, CV=2.18%, R2=91.19%, Adj. R2=89.89%

Factor Symbol Low Level (-1) Mid Level (0) High Level (+1)
Car weight (No. of passengers) A 1 3 5
Car speed (km/h) B 10 20 30
Distance (m) C 10 15 20
Surface inclination (%) D 0 3.5 7



32 
 

considered three replications for a total of 3 x 24 = 48 runs. Due to the large number of runs, the 
experiments were conducted over two days.  Each day was considered as a block using I=ABCD 
as the block generator.  Two center points were also added to each block to check for curvature. 
Hence, the total number of runs was 52.   

Design-Expert 8 was used for the experimental design and analysis.  The design and responses 
were shown in Table 2 of the paper and are reproduced here as Table 3.17.   

Table 3.17: Response factors, which were measured in the performed actual experimental design. 
Table 2 of Khademi et al (2013). 
 

 
From Table 3.17, there were 60 data points in total because three replications were also used for 
the center points. No explanation was given on how the center point results were used in the 
analysis as there should be only 52 points used in the analysis.  

In the first round of analysis, the authors found that an inverse square-root transformation of the 
response was required to meet the assumptions of regression. The ANOVA results with only the 
statistically significant effects at the 5% level and the goodness of fit statistics were shown in Table 
6 of the paper and are reproduced here as Table 3.18.  The regression coefficient estimates and 
associated standard errors were shown in Table 7 of the paper and are reproduced here as Table 
3.19.  
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B: Car 
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C: 
Distance 

(m)

D: Surface 
Inclination 

(%)
R1 R2 R3 Total Average

Standard 
Deviation

1 (1) + 1 10 10 0 2.18 4.90 3.26 10.34 3.45 1.37
2 a - 5 10 10 0 3.05 3.69 3.35 10.09 3.36 0.32
3 b - 1 30 10 0 1.20 1.35 1.68 4.23 1.41 0.25
4 ab + 5 30 10 0 1.36 1.26 1.71 4.33 1.44 0.24
5 c - 1 10 20 0 4.31 7.76 6.56 18.63 6.21 1.75
6 ac + 5 10 20 0 4.41 7.95 7.72 20.08 6.69 1.98
7 bc + 1 30 20 0 3.08 3.05 3.29 9.42 3.14 0.13
8 abc - 5 30 20 0 3.13 3.16 3.37 9.66 3.22 0.13
9 d - 1 10 10 7 4.34 2.79 3.91 11.04 3.68 0.80

10 ad + 5 10 10 7 3.53 4.27 3.87 11.67 3.89 0.37
11 bd + 1 30 10 7 1.65 1.66 1.96 5.27 1.76 0.18
12 abd - 5 30 10 7 1.70 1.58 2.14 5.42 1.81 0.29
13 cd + 1 10 20 7 8.12 8.42 8.64 25.18 8.39 0.26
14 acd - 5 10 20 7 5.71 8.93 10.28 24.92 8.31 2.35
15 bcd - 1 30 20 7 3.45 3.18 3.05 9.68 3.23 0.20
16 abcd + 5 30 20 7 3.20 3.24 3.46 9.90 3.30 0.14
17 CP 0 3 20 15 3.5 2.79 3.41 3.44 9.64 3.21 0.37
18 CP 0 3 20 15 3.5 3.46 5.13 4.29 12.88 4.29 0.84
19 CP 0 3 20 15 3.5 3.05 3.41 3.14 9.60 3.20 0.19
20 CP 0 3 20 15 3.5 4.53 3.41 2.96 10.90 3.63 0.81

Factors No. of replicates (Time (s))
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Table 3.18: New ANOVA Table (Partial sum of squares - Type III). Table 6 of Khademi et al 
(2013). 
 

 
Table 3.19: New Post ANOVA Table. Table 7 of Khademi et al (2013). 
 

 
 

From Table 3.19, the final empirical models in terms of coded and actual factors were given as 
(Equations 3 and 4 in the paper, respectively):  

Coded: 

      1/Sqrt(Time) = 0.56 + 0.11 B – 0.10 C – 0.02 C – 0.023 D – 0.020 BC  

Actual: 

      1/Sqrt(Time) = 0.54379 + 0.017176 x Car speed – 0.011835 x Distance  
                              – 3.10876E-0.003 x Surface inclination – 4.07165E-004 x Car Speed x Distance 
 

Source Sum of Squares d.f. Mean Square F Value p-value (Prob > F)
Block 5.37E-05 1 5.368E-05
Model 1.11 4 0.28 118.03 <0.0001 significant
B- Car Speed 0.59 1 0.59 249.45 <0.0001 significant
C - Distance 0.48 1 0.48 203.16 <0.0001 significant
D - Surface Inclination 0.026 1 0.026 11.07 0.0018 significant
BC 0.020 1 0.020 8.44 0.0057 significant
Curvature 4.768E-03 1 4.768E-03 2.02 0.1619 not significant
Residual 0.11 45 2.360E-03
Lack of fit 0.013 11 1.200E-03 0.44 0.9260 not significant
Pure Error 0.093 34 2.73E-03
Cor. Total 1.22 51

Stad Dev. 0.049 R2 0.9094
Mean 0.56 Adj R2 0.9015
C.V. % 8.70 Pred. R2 0.8840
PRESS 0.14 Adeq. Precision 28.1740
Note:  After Inverve square-root transform of Time.

Factor Coefficient estimate d.f. Standard error 95% CI (Low) 95% CI (High) VIF
Intercept 0.56 1 6.81E-03 0.55 0.58
Day 1 1.02E-03 1
Day 2 -1.02E-03
B - Car Speed 0.110 1 7.09E-03 0.10 0.12 1
C - Distance -0.100 1 7.09E-03 -0.11 -0.086 1
D - Surface Inclination -0.023 1 7.09E-03 -0.04 -9.05E-03 1
BC -0.020 1 7.09E-03 -0.03 -6.10E-03 1
Note: After inverse square-root transform of Time.
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Eight confirmation experiments were then performed to confirm the accuracy of the model 
developed.  The run combinations and results were shown in Tables 8 of the paper. The comparison 
of the average experimental results and model results were shown in Table 9 of the paper and are 
reproduced here as Table 3.21.  

Table 3.20: Treatment combinations used for confirmation experiments. Table 8 of Khademi et al 
(2013). 
 

 
 

Table 3.21: Confirmation experiments. Table 9 of Khademi et al (2013). 
 

 
The two runs were the same combinations as those performed previously while the next six run 
combinations were within the range of the levels used. The maximum time between the starting 
point after the speed bump and the stop point was reported by the authors as 8.13 sec although 
Table 3.21 showed the maximum time was 8.37 sec. The optimum conditions found were a low 
car speed, 20 m distance, and high inclination.  

Reanalysis of the provided data using Design-Expert 12 produced similar but not identical results. 
This is likely due to the uncertainty of which center point data were used in the analysis.   

 

 

 

 

Run A: Car Weight B: Car Speed C: Distance D: Surface Inclination R1 R2 R3 Total Average
(No. of passengers) (km/h) (m) (%)

1 5 10 20 7 5.71 8.68 9.98 24.38 8.13
2 1 10 20 7 8.42 8.54 8.15 25.11 8.37
3 5 10 15 0 4.73 4.71 4.78 14.23 4.74
4 1 10 15 0 5.00 4.76 5.14 14.9 4.97
5 5 20 10 0 1.76 2.27 2.14 6.17 2.06
6 1 20 10 0 1.95 2.00 2.19 6.14 2.05
7 1 20 20 0 4.65 3.83 4.14 12.62 4.21
8 1 20 15 0 2.13 2.29 2.20 6.62 2.21

No. of replicates (Time (sec))Factors

Run A: Car Weight B: Car Speed C: Distance D: Surface Inclination Average (Actual Prediction Residual Error (%) 95% 95%
(No. of passengers) (km/h) (m) (%) Time (Sec) (Time (sec)) PI low PI high

1 5 10 20 7 8.13 8.12 0.00 0.06 6.26 10.96
2 1 10 20 7 8.37 8.12 0.25 2.98 5.78 12.24
3 5 10 15 0 4.74 4.39 0.35 7.35 3.68 5.34
4 1 10 15 0 4.97 4.39 0.58 11.53 3.64 5.41
5 5 20 10 0 2.06 2.11 0.06 2.91 1.85 2.44
6 1 20 10 0 2.05 2.11 0.07 3.28 1.84 2.46
7 1 20 20 0 4.21 4.20 0.01 0.12 3.56 5.04
8 1 20 15 0 2.21 2.05 0.16 7.05 1.80 2.36

Factors
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Case Study #3.6 

Mtaallah, S., Ikhlass Marzouk, and Bechir Hamrouni (2018): Factorial experimental design 
applied to adsorption of cadmium on activated alumina. Journal of Water Reuse and 
Desalination, 08.1, pp. 76-85. 

In this study a four-factor two-level (24) full factorial design was used to investigate the influence 
of four factors on the removal efficiency of cadmium from aqueous solutions and industrial 
effluents by adsorption on activated alumina. Cadmium, a toxic heavy metal, adversely affects 
humans, animals, and plants.  The materials and methods used in the experiment were described 
in the paper. The factors and levels used in the experiment were shown in Table 3 of the paper and 
are reproduced here as Table 3.22. 

Table 3.22: Experimental ranges and levels of the factors studied in the factorial design. Table 3 
of Mtaallah et al (2018). 
 

 

The response of interest was the percentage removal of cadmium II (%Cd) as defined in the paper. 
Minitab 16 statistical software was used for the design and analysis of the experiment. The full-
factorial design with 4 factors required 16 runs.  Two center points were added to test for curvature 
and provide a measure of pure error. The experimental design in terms of actual factors and results 
were shown in Table 4 of the paper and are reproduced here as Table 3.23. The response ranged 
from 16.24% to 99.09%.   

The reduced ANOVA results were shown in Table 5 of the paper and are reproduced here as Table 
3.24. No goodness of fit statistics were given.  The model representing Cd(II) removal was 
expressed as (Equation 3 of the paper): 

%Cd = 63.25 + 14.67X1 – 20.23X2 – 5.17X3 + 13.54X4 + 2.3X1X2 + 3.45X1X3 + 0.89X1X4  
            + 0.83X2X3 + 0.64X3X4 + 3.29X2X4. 
 
As can be seen from Table 3.23, only factors A, B, and D were statistically significant at the 5% 
level, all other terms could have been left out of the model.  

Reanalysis of the data using Design-Expert 12 showed that the model suggested by the authors 
had a predicted R2 of -0.1036 indicating that the model was no better than using the overall mean 
response.  Furthermore, the lack of fit was also statistically significant and a highly statistically 
significant term (p-value <0.0001), ABD, was not included in the model.  
 
 
 
 

Variables Factors Low level High level
X1 Dose AA (g) (A) 0.5 1.5
X2 Initial Cd(II) concentration ([Cd], mg/L) (B) 10 100
X3 pH (pH) (C) 5 8
X4 Temperature (T, °C)  (D) 10 40
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Table 3.23: Studied parameters in their reduced and normal forms. Table 4 of Mtaallah et al (2018). 
 

 

 

Table 3.24: ANOVA of the 24 design. Table 5 of Mtaallah et al (2018). 
 

 

The authors concluded that the highest percentage removal of cadmium was obtained at a 
temperature of 40C, adsorbent dose of 1.5 g, and initial cadmium concentration of 10mg/L. 
 

 

Experiment A X1 B X2 C X3 D X4 %Cd
1 0.5 -1 10 -1 5 -1 10 -1 68.38
2 1.5 1 10 -1 5 -1 10 -1 94.62
3 0.5 -1 100 1 5 -1 10 -1 23.34
4 1.5 1 100 1 5 -1 10 -1 35.78
5 0.5 -1 10 -1 8 1 10 -1 35.78
6 1.5 1 10 -1 8 1 10 -1 94.13
7 0.5 -1 100 1 8 1 10 -1 16.24
8 1.5 1 100 1 8 1 10 -1 29.83
9 0.5 -1 10 -1 5 -1 40 1 95.88

10 1.5 1 10 -1 5 -1 40 1 99.09
11 0.5 -1 100 1 5 -1 40 1 41.22
12 1.5 1 100 1 5 -1 40 1 89.08
13 0.5 -1 10 -1 8 1 40 1 84.43
14 1.5 1 10 -1 8 1 40 1 95.5
15 0.5 -1 100 1 8 1 40 1 23.34
16 1.5 1 100 1 8 1 40 1 85.75
17 1 0 55 0 6.5 0 25 0 73.54
18 1 0 55 0 6.5 0 25 0 73.21

Term Sum of Squares Degrees of freedom Mean square F-value p-value
A 3443.34 1 3443.340 10.25589 0.023929
B 6548.05 1 6548.050 19.50316 0.006916
C 428.9 1 428.900 1.27748 0.309653
D 2933.31 1 2933.310 8.73676 0.031672
A X B 85.47 1 85.470 0.25457 0.635319
A X C 190.58 1 190.580 0.56763 0.485145
A X D 12.92 1 12.920 0.03849 0.852180
B X C 11.26 1 11.260 0.03353 0.861912
B X D 173.32 1 173.320 0.51622 0.504623
C X D 6.68 1 6.680 0.01990 0.893317
Error 1678.71 5 335.743
Total sum of squares 15512.54 15
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Case Study #3.7 

Nasirabadi, P. S., M. Jabbari, and J. H. Hattel (2017): CFD simulation and statistical analysis of 
moisture transfer into an electronic enclosure. Applied Mathematical Modelling, 44, pp. 246-
260.  

This study used a four-factor two-level (24) full factorial design and computational fluid dynamics 
(CFD) to investigate the moisture transfer into a typical electronic enclosure. The factors and levels 
investigated were shown in Table 2 of the paper and are reproduced here as Table 3.25.  The CFD 
simulations were conducted using the COMSOL Multiphysics version 5.1 software package. Both 
isothermal and non-isothermal studies were carried out using the package. The geometry of the 
electronic enclosure and the equations used in the modelling were described in the paper.  

Table 3.25: The studied ranges of the parameters in the factorial design. Table 2 of Nasirabadi et 
al (2017). 
 

 
 
The main response of interest was the diffusion time of moisture into the enclosure at constant 
ambient temperature and relative humidity. The four-factor full factorial design with two levels 
required 16 run combinations. A center point was added to check for curvature.  Note that only 
one center point was added because this was a computer based experiment with no random error. 
The software used for experimental design and statistical analysis was not reported in the paper.  
The experimental design and results were shown in Table 4 of the paper and are reproduced here 
as Table 3.26.   
 
Preliminary analysis showed that the response needed a logarithmic transformation to meet the 
assumptions of regression.  The ANOVA results after a log-transform (base 10) of the response 
were shown in Table 5 of the paper and reproduced here as Table 3.27. Table 5 in the paper was 
wrongly captioned.  The caption should read “ANOVA results” and should not be identical to 
Table 4 of the paper.  
 
The ANOVA results showed that only factors A, B and D were statistically significant at the 5% 
level and curvature was also statistically significant. The proposed regression model in terms of 
actual factors was (Equation 17 of the paper): 
 
Log(Response [s]) = 7.52153 + 0.022926 x L [mm] – 0.39190 x R [mm]  
                                – 8.03937 x 10-3 x RH [%] 
 
The goodness of fit statistics were given as R2 = 0.9363 and adjusted R2 = 0.9216. 
 
 

Factor Notification Coded symbol Low level High level Unit
Length of the opening (or tube) L A 2.00 50.00 [mm]
Radius of the opening R B 0.50 5.00 [mm]
Temperature T C 273.15 333.15 [K]
Initial RH RH D 40.00 80.00 [%]
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Table 3.26: The factorial design table for the factors and the responses. Table 4 of Nasirabadi et al 
(2017). 
 

 

 

Table 3.27: The ANOVA table for the response. Table 5 of Nasirabadi et al (2017). 
 

 
 
Reanalysis of the data using Design-Expert 12 gave practically identical ANOVA results to those 
reported but the intercept term in the regression equation was 7.47745 instead of the reported 
7.52153.  The R2 and adjusted R2 values were 0.9633 and 0.9541, respectively which were a little 
larger than those reported.  
 
Since the curvature was statistically significant at the 5% level, a better fit to the data would likely 
be obtained using a response surface model. 
 
 
 

Case # A [mm] B [mm] C [K] D [%] Response (diffusion time) [s]
1 2 0.5 273.15 40 8,500,000.00                             
2 50 0.5 273.15 40 208,000,000.00                        
3 2 5 273.15 40 143,000.00                                
4 50 5 273.15 40 1,474,000.00                             
5 2 0.5 333.15 40 6,210,000.00                             
6 50 0.5 333.15 40 149,450,000.00                        
7 2 5 333.15 40 464,000.00                                
8 50 5 333.15 40 1,544,000.00                             
9 2 0.5 273.15 80 4,892,000.00                             
10 50 0.5 273.15 80 166,460,000.00                        
11 2 5 273.15 80 108,000.00                                
12 50 5 273.15 80 1,095,000.00                             
13 2 0.5 333.15 80 3,815,000.00                             
14 50 0.5 333.15 80 28,500,000.00                           
15 2 5 333.15 80 72,000.00                                  
16 50 5 333.15 80 880,000.00                                
17 26 2.75 303.15 60 18,318,000.00                           

Source Sum of Degree of Mean F-value p-value
squares freedom square (Prob>F)

Model 17.7 3 5.90 104.85 <0.0001 Significant
A 4.84 1 4.84 86.09 <0.0001 Significant
B 12.44 1 12.44 221.11 <0.0001 Significant
D 0.41 1 0.41 7.35 0.0189 Significant
Curvature 0.53 1 0.53 9.39 0.0098 Significant
Residual 0.68 12 0.056
Total 18.90 16
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Case Study #3.8 

Ridzuan, N., F. Adam, and Z. Yaacob (2016): Screening of factor influencing wax deposition using 
full factorial experimental design. Petroleum Science and Technology, Vol. 34, No. 1, pp. 84-
90. 

This study used a four-factor two-level (24) full factorial design to investigate the rate of wax 
deposition of Malaysia crude oil under the influence of four parameters or factors.  The factors 
were the speed of rotation of the impeller, the cold finger temperature, experimental duration, and 
inhibitor concentration. The factors and levels used for the experiment are summarized in Table 
3.28.  The experimental setup and materials used were described in the paper.  

Table 3.28: Factors and levels used in the wax deposition experiment.  
 

 
The response of interest was the wax deposition (g).  The 24 experiment required 16 run 
combinations and three center points were added to check for curvature and as a measure of pure 
error. Hence a total of 19 runs was used. Design-Expert 7.1.6 software was used for the 
experimental design and statistical analysis. 

The experimental design in coded and actual factors, and results were shown in Table 1 of the 
paper and are reproduced here as Table 3.29.  Wax deposition ranged from 0.75 g to 3.0 g. The 
partial ANOVA results were shown in Table 2 of the paper and are reproduced here as Table 3.30.  

The authors proposed the following regression model for wax deposition (in coded factors) 
(Equation 2 of the paper): 

    Wax deposit = 1.68 + 0.12 – 0.60 + 0.34 C – 0.059 D + 0.059 AD – 0.12 BC – 0.053 BD 

The R2 value was reported as 0.9795. No other goodness of fit statistics were reported. Note that 
from the ANOVA table, effect D, AD, and BD were not statistically significant at the 5% level. 
Furthermore, the curvature was statistically significant at the 5% level.  The authors did not discuss 
the statistically significant curvature term and did not provide reasons for including the three 
insignificant terms in the model.  This experiment should be followed up with a response surface 
experiment to account for the curvature effect. 

 

 

 

 

Factor Symbol
Low level (-1) Mid level (0) High level (+1)

Speed of rotation, rpm A 0 300 600
Cold finger temperature, °C B 5 10 15
Experimental duration, h C 2 13 24
Inhibitor concentration, ppm D 200 2600 5000

Levels



40 
 

Table 3.29: Results for the screening design according to standard order. Table 1 of Ridzuan et al 
(2016). 
 

 
 
Table 3.30: Analysis of variance. Table 2 of Ridzuan et al (2016). 
 

 
 

 

A B C D
Uncoded/ Uncoded/ Uncoded/ Uncoded/ Wax deposit, g

Standard order coded coded coded coded
1 0 (-1) 5 2 200 1.90
2 600 (+1) 5 2 200 1.80
3 0 (-1) 15 2 200 0.80
4 600 (+1) 15 2 200 1.00
5 0 (-1) 5 24 200 2.65
6  600 (+1) 5 24 200 2.80
7 0 (-1) 15 24 200 1.40
8 600 (+1) 15 24 200 1.60
9 0 (-1) 5 2 5000 1.50

10 600 (+1) 5 2 5000 2.10
11 0 (-1) 15 2 5000 0.75
12 600 (+1) 15 2 5000 0.90
13 0 (-1) 5 24 5000 2.50
14 600 (+1) 5 24 5000 3.00
15 0 (-1) 15 24 5000 1.05
16 600 (+1) 15 24 5000 1.20
17 300 (0) 10 13 2600 1.40
18 300 (0) 10 13 2600 1.50
19 300 (0) 10 13 2600 1.45

Factors

Sum of Mean F p-value %
Source squares DF square value Prob>F Contribution
Model 8.14 7 1.16 68.220 <0.0001
     A - Speed of rotation 0.21 1 0.21 12.540 0.0053 2.54
     B - Cold finger temperature 5.70 1 5.70 334.290 <0.0001 67.65
     C - Experimental duration 1.86 1 1.86 108.870 <0.0001 22.03
     D - Inhibitor concentration 0.06 1 0.06 3.310 0.099 0.67
AD 0.06 1 0.06 3.310 0.099 0.67
BC 0.21 1 0.21 12.540 0.0053 2.54
BD 0.05 1 0.05 2.650 0.1347 0.54
Curvature 0.11 1 0.11 6.600 0.0279
Residual 0.17 10 0.017
Lack of fit 0.16 8 0.02 4.350 0.2003
Pur error 9.27E-03 2 4.63E-03
Cor total 8.43 18
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Case Study #3.9 

Shah, Mumtaj and S. K. Garg (2014): Application of 2k full factorial design in optimization f 
solvent-free microwave extraction of ginger essential oil. Journal of Engineering, Article ID 
828606, 5 pages. 

This study used three-factor two-level full factorial design to determine the optimum conditions 
for a solvent-free microwave extraction of essential oil from ginger. Solvent-free microwave 
extraction (SFME) combines microwave heating with distillation to extract essential oils from 
plant materials such as aromatic and medicinal plants. The factors and levels used in the 
experiment were shown in Table 1 of the paper and are reproduced here as Table 3.31. The 
materials and methods used in the experiment were described in the paper. 

Table 3.31: Coded and natural variables in 23 factorial design. Table 1 of Shah et al (2014). 
 

 

The response of interest is the oil yield (%) from fresh ginger. Design-Expert 8.0.7 software was 
used for the design and analysis of the experiment. The authors used two replications per run 
combination hence 16 runs were conducted. The experimental design and results were shown in 
Table 2 of the paper and are reproduced here as Table 3.32. 

Table 3.32: The 23 factorial design including corresponding responses. Table 2 of Shah et al (2016). 
 

 

Levels X1 (min) X2 (watt) X3 

Basic level (0) 20 464 -
High level (+1) 30 640 Sliced
Low level (-1) 10 288 Crushed
Interval 10 176 -
X1:extraction time (min); X2:microwave power (watt); X3: sample type.

Oil yield
Run x1 (extraction time) x2 (microwave power) x3 (sample type) y (%)

1 -1 -1 -1 0.10
2 1 -1 -1 0.26
3 -1 1 -1 0.14
4 1 1 -1 0.35
5 -1 -1 1 0.22
6 1 -1 1 0.20
7 -1 1 1 0.28
8 1 1 1 0.44
9 -1 -1 -1 0.12

10 1 -1 -1 0.25
11 -1 1 -1 0.14
12 1 1 -1 0.32
13 -1 -1 1 0.24
14 1 -1 1 0.17
15 -1 1 1 0.31
16 1 1 1 0.46

Coded variables
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The ANOVA results were shown in Table 3 of the paper and are reproduced here as Table 3.33. 
All seven effects were statistically significant at the 5% level.  

Table 3.33: Analysis of variance. Table 3 of Shah et al (2016). 

 

The regression model for oil yield was given as (Equation 4 in the paper): 

Y (oil yield) = 0.25 + 0.056X1 + 0.055X2 + 0.040X3 + 0.031X1X2 – + 0.028X2X3 - 0.029X1X3  
                      + 0.019 X1X2X3 

 
The R2 and adjusted R2 were 0.9885 and 0.9783, respectively. The predicted R2 was also close to 
the adjusted R2. Regression assumptions were checked and were found to be fulfilled.  
 
Optimization of the oil yield was then carried out using the desirability function approach available 
in Design-Expert.  The settings for the various factors and results were shown in Table 4 of the 
paper and are reproduced here as Table 3.34. 
 
Table 3.34: Setting goal for each factor and response for formulation of optimization and selected 
optimized conditions. Table 4 of Shah et al (2016). 
 

 
The maximum oil yield achieved was 0.45% at the high settings of all three factors.  However, no 
confirmation experiments were carried out to validate the predicted results.   

Reanalysis of the data using Design-Expert 12 obtained identical results as reported by the authors.  

 

Degree of P-value
Source Sum of squares freedom (df) Mean square F value prob > F Remark
Model 0.17 7 0.024 97.83 <0.0001 Significant
A-extraction time 0.051 1 0.051 202.50 <0.0001
B - power 0.048 1 0.048 193.60 <0.0001
C - sample 0.026 1 0.026 102.40 <0.0001
AB 0.016 1 0.016 62.50 <0.0001
AC 0.013 1 0.013 52.90 <0.0001
BC 0.012 1 0.012 48.40 0.0001
ABC 5.625E-03 1 5.63E-03 22.50 0.0015
Pure error 2.000E-03 8 2.500E-04
Cor total 0.17 15

Factors/response Goal Coded Actual
Extraction time (min) In range 1 30 min
Microwave power (watt) In range 1 640 watts
Sample type In range 1 Crushed sample
Oil yield Maximum 0.45% 0.45%

Selected optimum conditions
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Case Study #3.10 

Yusoff, N. H. N., M. J. Ghazali, M. C. Isa, A. R. Daud, A. Muchtar, and S.M. Forghani (2012): 
Optimization of plasma spray parameters on the mechanical properties of agglomerated Al2O3-
13%TiO2 coated mild steel. Materials and Design, 39, pp. 504-508. 

This study used a three-factor two level (23) full factorial design to investigate the effect of plasma 
spray parameters of deposited agglomerated nano Al2O3-13%TiO2 powders on commercial 
marine-grade mild steels. The parameters or factors and levels used in the experiment were shown 
in Table 1 of the paper and are reproduced here as Table 3.35. The experimental procedures and 
materials used in the experiment were described in the paper.  

Table 3.35: Experimental range and levels of independent parameters for plasma spray coating. 
Table 1 of Yusoff et al (2012). 
 

 
Three responses of interest were – Y1, microhardness; Y2, specific wear rate; and Y3, surface 
roughness. Design-Expert 6.0.10 software was used for the design and analysis of the experiment. 
The authors added one center point to the 23 design resulting in 9 runs. The experimental design 
and results were shown in Table 2 of the paper and are reproduced here as Table 3.36. 

Table 3.36: Full-factorial design for plasma spray experiment. Table 2 of Yusoff et al (2012). 
 

 
The partial ANOVA results and estimated regressions coefficients in coded units were shown in 
Table 3 of the paper and are reproduced here as Table 3.37.   

 
 
 
 

Independent parameters
Low (-1) Central point (0) High (+1)

Primary gas pressure (X1) psi 40 80 120
Carrier gas pressure (X2) psi 20 32.5 45
Powder feed rate (X3) rpm 1 2 3

Range (coded level)

Run X1 X2 X3 Y1 Y2 Y3

1 -1 1 1 350 0.0240 9.88
2 1 1 1 555 0.0068 9.52
3 -1 1 -1 375 0.0176 9.19
4 -1 -1 1 413 0.0219 7.49
5 1 -1 1 1057 0.0023 8.36
6 1 1 -1 958 0.0012 11.29
7 1 -1 -1 714 0.0050 10.00
8 -1 -1 -1 965 0.0004 7.43
9 0 0 0 473 0.0499 9.63
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Table 3.37: Full 23 factorials design (Coefficient are given in coded unit). Table 3 of Yusoff et al 
(2012). 
 

 
The final regression models in coded factors with statistically significant terms at the 5% level 
were given as (Equations 2 to 4 of the paper): 

         Y1 = microhardness = 663.13 – 260.38 X1 

         Y2 = specific wear rate = 0.015 + 0.013 X1 

         Y3 = surface roughness = 9.16 + 0.45 X2 – 0.93 X1X3 + 0.63 X2X3 

Goodness of fit statistics for these models were not reported.  Also note from Table 3.37, Y3, X2 
was not statistically significant at the 5% level.  

The authors found that the optimum properties of the coatings with the best wear resistance, surface 
roughness, and microhardness occurred at the lowest primary pressure of 40 psi, carrier gas 
pressure of 20 psi, and the highest powder feed rate of 3 rpm. 

Reanalysis of the given data using Design-Expert 12 did not reproduce the same ANOVA results 
or estimated regression coefficients.  Hence, the results reported may not  be valid.  

 

 

Term SS Coefficient P value
(a) for Y1

X1 5.60E+05 -264.88 0.0004

(b) For Y2

X1 1.37E-03 0.013 0.0122

(c) For Y3

X1 0.097 -0.11 0.42
X2 1.59 0.45 0.06
X2 0.41 0.23 0.18
X1X2 6.93 -0.93 0.01
X2X3 3.18 0.63 0.03
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______________________________________________ 
4. FRACTIONAL FACTORIAL DESIGNS 

 

Nine case studies using two-level fractional factorial or 2k-p designs are presented in this Chapter. 
The number of factors ranges from five to seven and fractions range from half to one-sixteenth.  

 

Case Study #4.1 

Chen, J. P., S. L. Kim, and Y. P. Ting (2003): Optimization of membrane physical and chemical 
cleaning by a statistical designed approach. Journal of Membrane Science, 219, pp. 27-45. 

In this study, the authors used several 2-level fractional factorial designs (2k-p) to investigate the 
efficiency of physical and chemical cleaning of ultrafiltration (UF) and reverse osmosis (RO) 
membranes in municipal wastewater reclamation. The responses measured were the clean water 
flux recovery in percentage and the wash water usage. The definitions of these responses and the 
technical specifications of the two types of membranes were given in the paper.  

For the physical cleaning experiment of the UF and RO membranes, the authors first used a 
resolution III 26-3 design with eight runs followed up with a complete foldover to give a resolution 
IV design with 16 runs.  The same strategy was used for the chemical cleaning of RO membranes. 
For the chemical cleaning of UF membranes, only five factors were involved. Hence a 25-2 design 
was used followed by a complete foldover giving 16 runs. The authors did not mention the defining 
relationships used for the fractional factorial design nor the statistical software used for design and 
analysis of the experiments.  

For this case study, only the physical and chemical cleaning experiments for the UF membranes 
are presented. The other experiments are similar and hence will not be described herein. The 
designs and results can be found in the paper. 

The first experiment investigated six factors that affect the physical cleaning of the UF membrane. 
The levels and factors considered were listed in Table 1 of the paper and are reproduced here as 
Table 4.1.  

Table 4.1: Factors and levels for the physical cleaning of UF membranes (PC-UF).  

 

Factor Details Low Level (-) High level (+1)

A Production interval between physical cleaning (h) 0.5 3

B Duration of forward flush (min) 1 5

C Duration of backwash (min) 1 5

D Pressure during forward flush (kPa) 172 345

E Type of water used RO permeate Tap water

F Sequence of forward flush and backwash Backwash followed by forward flush Forward flush followed by backwash
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The experimental design, a 26-3 design with a complete foldover, and results were shown in Table 
2 of the paper. It is adapted here in Table 4.2.  The two responses CWF recovery (%) and wash 
water usage are labelled here as y1 and y2, respectively.  

Table 4.3: Experimental design and results in physical cleaning of UF (PC-UF). Adapted from 
Table 2 of Chen et al (2003). 

 

The authors used the normal probability plot of effects to select the statistically significant effects. 
No ANOVA results were shown and the significance level was not mentioned. From the normal 
effects plots, the following models (in coded values) were suggested for CWF recovery % (y1), 
and wash water usage (y2) (these were Equations 5a and 5b in the paper):  

 y1 = 85.17 – 4.090 x1 + 2.749 x3 – 1.611 x4 + 1.801 x1x3 

 y2 = 0.309 – 0.209 x1 + 0.131 x2 + 0.070 x3 – 0.016 x1 x2 – 0.026 x1x3 

where, the variables x1, x2, x3 and x4 represent values of A, B, C, and D, respectively. The terms 
x1x2 and x1x3 represent the interaction between A and B, and A and C, respectively. No goodness 
of fit statistics were given.  

For the chemical cleaning of UF membranes, five factors were studied. The factors and levels are 
shown in Table 4.3.   

 

 

Run CWF % WWU

A B C D E F y1 y2

1 -1 -1 -1 1 1 1 82.54 0.15

2 1 -1 -1 -1 -1 1 80.56 0.03

3 -1 1 -1 -1 1 -1 92.89 0.32

4 1 1 -1 1 -1 -1 75.80 0.08

5 -1 -1 1 1 -1 -1 88.73 0.34
6 1 -1 1 -1 1 -1 86.34 0.08
7 -1 1 1 -1 -1 1 94.89 0.48
8 1 1 1 1 1 1 87.19 0.12
9 1 1 1 -1 -1 -1 88.02 0.11

10 -1 1 1 1 1 -1 87.94 0.58
11 1 -1 1 1 -1 1 82.21 0.08
12 -1 -1 1 -1 1 1 88.73 0.34
13 1 1 -1 -1 1 1 73.03 0.09
14 -1 1 -1 1 -1 1 87.24 0.34
15 1 -1 -1 1 1 -1 76.18 0.03
16 -1 -1 -1 -1 -1 -1 90.48 0.10

Factors
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Table 4.3: Factors and levels for the chemical cleaning of UF membranes (CC-UF).  
 

 

The authors first used a 25-2 design followed by a complete foldover. The experimental design and 
results were shown in Table 4 of the paper and are reproduced here as Table 4.4. For this 
experiment only one response, the CWF recovery % was measured.  It is labelled as y5 in Table 
4.4. 

Table 4.4: Experimental design and results of chemical cleaning of UF (CC-UF). Adapted from 
Table 4 of Chen et al (2003). 
 

 

From the normal probability plot of effects, the authors suggested the follow regression equation 
for CWF recovery % (y5) (Equation 7 in the paper): 

y5 = 89.15 – 3.409 x2 + 5.000 x3 – 3.436 x5 – 2.076 x2x3 

where the factors involved are B(x2), C(x3), and E(x5). No ANOVA results or goodness of fit 
statistics were given.  

Overall, the authors found that the application of factorial design to optimize physical and chemical 
cleaning of both UF and RO membranes was successful.  

Factor Details Low Level (-) High level (+1)
A Recirculation duration of high pH cleaning (min) 30 60
B Concentration of high pH cleaning solution (%) 0.5 1
C Temperature of high pH cleaning solution (°C) 25 50
D Static soak (min) 0 30
E Forward flush or backwash after chemical cleaning Backwash Forward flush

Run CWF %

A B C D E y5

1 -1 -1 -1 1 1 72.16

2 1 -1 -1 -1 -1 81.05

3 -1 1 -1 -1 1 89.47

4 1 1 -1 1 -1 94.85

5 -1 -1 1 1 -1 96.84
6 1 -1 1 -1 1 92.39
7 -1 1 1 -1 -1 97.94
8 1 1 1 1 1 92.39
9 1 1 1 -1 -1 100.00

10 -1 1 1 1 1 91.58
11 1 -1 1 1 -1 97.83
12 -1 -1 1 -1 1 84.21
13 1 1 -1 -1 1 84.54
14 -1 1 -1 1 -1 89.69
15 1 -1 -1 1 1 78.95
16 -1 -1 -1 -1 -1 82.47

Factors
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Case Study #4.2 

Choi, Y.E., Y-S Yun, and J.M. Park (2002): Evaluation of factors promoting Astaxanthin 
production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial 
design. Biotechnology Progress, 18, pp. 1170-1175. 

This study evaluated seven factors that affect astaxanthin production by a unicellular green alga, 
Haematococcus pluvialis UTEX 16 using a sequential 2-level fractional factorial design. 
According to the authors, astaxanthin has great commercial value due to its high price. It is used 
mainly as a source of pigmentation in the aquaculture industry. The production of astaxanthin is a 
function of many factors specified by the authors in Table 1 of the paper and adapted here in Table 
4.5.  

Table 4.5: Specification of factors and levels used in the experiments. Table 1 of Choi et al, 2002). 

 

Note: Plus signs represent the application of astaxanthin methods; minus signs means no use of 
the methods. When the astaxanthin production methods were not applied (-1), the optimal 
Haematococcus medium (OHM) was used. For the application of methods A, F, and S, 
CH3COONa, FeSO4 and NaCl were used, respectively. The materials and methods used in the 
experiments were described in detail in the paper.  

The authors first used a resolution III 27-4 fractional factorial design with 8 runs. The defining 
relationship used was the one recommended in standard textbooks. They then augmented the 
design to a resolution IV with a full foldover giving 16 runs.  The experimental design and the 
responses were shown in Table 2 of the paper and are reproduced here in Table 4.6. Two responses 
were measured, the weight content (mg/g) and the cellular content (pg/cell).  The first eight runs 
were based on a resolution III design, and the next eight runs were from the complete foldover. 

Apparently the authors did not use any statistical software to design the experiment or analyze the 
results.  Manual calculations and the normal probability plot of effects were used and the effects 
were only compared to the size of the standard error. Hence there were no ANOVA results or 
regression models produced.  The calculated effects and standard errors for the augmented 
fractional factorial design with 16 runs were given in Table 3 of the paper and are shown here as 
Table 4.7.  

 

 

Production Methods (Factors) Variables (units) Low level (-1) High level (+1)
Nitrogen deficiency (N) nitrogen concentration (mM) 4.06 0
Phosphorus deficiency (P) phosphorus concentration (mM) 0.21 0
High irradiation (L) photon flux density (µE m-2s-1) 100 500
Magnesium deficiency (M) magnesium concentration (mM) 1 0
Acetate addition (A) acetate concentration (mM) 0 15
Ferrous ion addition (F) ferrous concentration (mM) 0 0.45
Salt addition (S) NaCl concentration (mM) OHM 25
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Table 4.6: First fractional factorial design and responses. Table 2 of Choi et al (2002).  

 

 

Table 4.7: Calculated effects and standard errors from first fractional factorial design based on the 
assumption that interactions between three or more factors are negligible. Table 3 of Choi et al 
(2002). 

 

weight cellular
Expt No. N P L M A F S content (mg/g) content (pg/cell)

1 -1 -1 -1 1 1 1 -1 4.2 10.8
2 1 -1 -1 -1 -1 1 1 4.4 24.9
3 -1 1 -1 -1 1 -1 1 7.8 27.3
4 1 1 -1 1 -1 -1 -1 14.9 36.3
5 -1 -1 1 1 -1 -1 1 25.3 112.6
6 1 -1 1 -1 1 -1 -1 26.7 159.3
7 -1 1 1 -1 -1 1 -1 23.9 145.2
8 1 1 1 1 1 1 1 21.9 243.2
9 1 1 1 -1 -1 -1 1 24.3 72.1
10 -1 1 1 1 1 -1 -1 20.5 112.2
11 1 -1 1 1 -1 1 -1 10.8 22.5
12 -1 -1 1 -1 1 1 1 20.8 149.7
13 1 1 -1 -1 1 1 -1 13.5 140.1
14 -1 1 -1 1 -1 1 1 10.3 47.3
15 1 -1 -1 1 1 -1 1 23 153.2
16 -1 -1 -1 -1 -1 -1 -1 12.1 35.2

Responses
Coded units of variables

weight content cellular content
Effects (mg/g) (pg/cell)
Average 16.5 ± 1.0 93.2 ± 15.3
N 1.8 ± 1.9 26.4 ± 30.5
P 1.2 ± 1.9 19.4 ± 30.5
L 10.5 ± 1.9 67.7 ± 30.5
M -0.3 ± 1.9 -2.0 ± 30.5
A 1.6 ± 1.9 62.5 ± 30.5
F -5.6 ± 1.9 9.5 ± 30.5
S 1.4 ± 1.9 21.1 ± 30.5
PM+LA+FS -0.2 ± 1.9 15.6 ± 30.5
NM+LF+AS 0.8 ± 1.9 16.7 ± 30.5
NA+PF+MS 6.1 ± 1.9 72.6 ± 30.5
NP+LS+AF 1.2 ± 1.9 13.5 ± 30.5
NL+PS+MF -3.5 ± 1.9 -32.1 ± 30.5
NS+PL+MA 0.5 ± 1.9 12.7 ± 30.5
NF+PA+LM -4.0 ± 1.9 -7.0 ± 30.5

estimate ± standard error



50 
 

According to the authors, only positive effects on the responses are important. Hence, for the 
weight content, from Table 4.7, the effects L, and the aliased interaction term NA+PF+MF are 
deemed significant since their effect estimates are larger than the standard error. Other effects were 
deemed not significant or they contribute a negative amount. For the response cellular content, the 
effects L, A, and the same aliased interaction term NA+PF+AF, are significant as they contribute 
positively to that response. However, the NA+PF+AF effect could also be due to the interactions 
of P and F or A and F, besides N and A. The authors reasoned that the NA interaction was most 
likely to be responsible for the positive effect of the confounded interaction NA+PF+AF.  

To confirm the author’s suspicion, these interactions had to be de-aliased. To achieve this, the 
authors performed a single-factor foldover on factor A. This means that A was no longer aliased 
with other factors and was also de-aliased from all interactions involving A.  

The results of the new set of 8 experiments folding over on A alone was shown in Table 4 of the 
paper and are shown here as Table 4.8.  The combined data from the first 8 runs of the first 
experiment (Table 4.6) and from Table 4.8 were reanalyzed. The estimated effects and standard 
errors were shown in Table 5 of the paper and are reproduced here as Table 4.9. 

Table 4.8: Additional fractional factorial design and responses. Table 4 of Choi et al (2002).  
 

 

 

 

 

 

 

 

 

 

weight cellular
Expt No. N P L M A F S content (mg/g) content (pg/cell)

17 -1 -1 -1 1 -1 1 -1 13.9 129.5
18 1 -1 -1 -1 1 1 1 9.3 268.8
19 -1 1 -1 -1 -1 -1 1 22 127.4
20 1 1 -1 1 1 -1 -1 20.8 135.9
21 -1 -1 1 1 1 -1 1 24.3 112.3
22 1 -1 1 -1 -1 -1 -1 27.6 119.7
23 -1 1 1 -1 1 1 -1 10.2 221.7
24 1 1 1 1 -1 1 1 2.8 35.3

Responses
Coded units of variables
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Table 4.9: Calculated effects and standard errors from the additional fractional factorial design and 
the first half of the first fractional factorial design based on the assumption that interactions 
between three or more factors are negligible. Table 5 of Choi et al (2002). 
 

 
From Table 4.9, one can see that A and all its interactions are now clear of other factors and 
interactions. The NA interaction effect is larger than the standard error for both responses and the 
AF interaction effect is larger than the standard error for the cellular content response.   

Combining the results from the first and second fractional factorial designs (Tables 4.7 and 4.9), 
the authors concluded that for weight content, high irradiation (L) and the interaction between 
nitrogen deficiency and acetate addition (NA) were most effective in increasing the responses. For 
cellular content, NA and the interaction between acetate addition and ferrous ion addition (AF), 
along with single-factors of high irradiation (L) and acetate addition (A), were most effective in 
increasing the responses.  These observations, based on the estimated effects, were confirmed by 
the authors using normal probability plots of effects. 

The authors stated that the approach they took which composed of three resolution III 27-4 parts 
required only 24 runs. This was much fewer than if a full factorial design was used which would 
have required 128 runs.  

 

 

 

 

weight content cellular content
Effects (mg/g) (pg/cell)
Average 16.2 ± 1.0 119.3 ± 15.3
N+PM+FS -0.4 ± 1.9 17.1 ± 30.5
P+NM+LF -1.4 ± 1.9 4.3 ± 30.5
L+PF+MS 8.2 ± 1.9 48.6 ± 30.5
M+NP+LS -0.5 ± 1.9 -34.8 ± 30.5
A -1.2 ± 1.9 56.1 ± 30.5
F+NS+PL -9.9 ± 1.9 31.1 ± 30.5
S+NF+LM -3.1 ± 1.9 -0.8 ± 30.5
LA 2.1 ± 1.9 24.9 ± 30.5
AS 3.4 ± 1.9 31.8 ± 30.5
NA 8.5 ± 1.9 91.7 ± 30.5
AF 1.4 ± 1.9 46.3 ± 30.5
NL+PS+MF -0.8 ± 1.9 -25.7 ± 30.5
MA 4.8 ± 1.9 -8.9 ± 30.5
PA 0.5 ± 1.9 14.9 ± 30.5

estimate ± standard error
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Case Study #4.3 

Farris, S. and Luciano Piergiovanni (2008): Effects of ingredients and process conditions on 
‘Amaretti’ cookies characteristics. International Journal of Food Science and Technology, 43, 
pp. 1395-1403. 

This study was concerned with the use of fractional factorial design on the factors that determine 
the quality and taste of the well-known Italian ‘Amaretti’ cookies during their shelf life. The 
characteristics studied included: hardness, moisture content, water activity, and colour of the 
cookies.  The authors considered five controllable factors in their experiment and decided to study 
these factors using a half fraction of a 2-level factorial design i.e. a 25-1 design. The factors and 
levels used were given in Table 2 of the paper and are reproduced here as Table 4.10.  For this 
experiment, the authors made some modifications to the original recipe by adding fibre and using 
fructose/saccharose (F/S) mixture instead of only saccharose. The level used in the original recipe 
was also shown in the table.  

Table 4.10: Factors and their levels for both the 25-1 design and the original recipe. Table 2 of 
Farris et al (2008). 

 

Four responses were measured in the experiment:  Y1, Hardness (N-mm) – measured using a food 
texture analyzer; Y2, Moisture content (% H2O) – measured using Gravimetric analysis; Y3, Water 
activity – measured with an electronic hygrometer; and Y4, Colour – measured using an observer 
reflection colorimeter.  These were described in the paper.  

The authors chose a resolution V 25-1 design that required 16 runs.  Five center points were added 
to measure pure error giving a total of 21 experiments.  This design would allow all main effects 
and two-factor interactions to be estimated without bias. The experimental design and results were 
shown in Table 3 of the paper and are reproduced here as Table 4.11.  

The authors used MODDE Version 8 software package by UMETRICS AB, Umea, Sweden for 
the evaluation of the raw data and regression analysis using the least squares method. A two-factor 
interaction model was fitted to each of the responses and only regression coefficients significant 
at the 5% level were selected for developing the final regression models.  

The estimated coefficients of the fitted equations for the different responses were shown in Table 
4 of the paper and are reproduced here as Table 4.12.  

 

Variable Unit Coded Uncoded -1 0 +1 Original recipe
Fibre g X1 Fib 20 25 30 None
F/S g/g X2 F/S 0.1 0.24 0.38 Only saccharose (650)
Egg white g X3 Egg 250 257.5 265 255
Temperature °C X4 Temp. 165 180 195 200
Time Min X5 Time 18 20 22 20

Symbol Levels
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Table 4.11: Worksheet of the 25-1 fractional factorial design. Table 3 of Farris et al (2008). 
 

 
 
Table 4.12:  Estimated significant coefficients of the fitted equations for the different responses. 
Table 4 of Farris et al (2008). 
 

 

Std order Run X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
1 6 20 0.1 250 165 22 19.81 15.00 0.698 85.46
2 5 30 0.1 250 165 18 15.30 15.27 0.722 86.42
3 1 20 0.38 250 165 18 13.70 18.33 0.775 86.00
4 16 30 0.38 250 165 22 35.30 17.47 0.761 80.66
5 20 20 0.1 265 165 18 9.90 17.00 0.745 82.91
6 21 30 0.1 265 165 22 29.95 15.16 0.698 86.65
7 13 20 0.38 265 165 22 19.42 18.99 0.759 82.61
8 17 30 0.38 265 165 18 16.99 18.75 0.777 84.12
9 4 20 0.1 250 195 18 44.27 14.96 0.723 75.18
10 7 30 0.1 250 195 22 56.32 13.59 0.664 61.22
11 10 20 0.38 250 195 22 45.97 15.50 0.714 53.24
12 18 30 0.38 250 195 18 39.02 16.63 0.724 63.04
13 8 20 0.1 265 195 22 32.71 12.31 0.712 62.49
14 11 30 0.1 265 195 18 34.66 15.33 0.708 69.41
15 15 20 0.38 265 195 18 30.10 17.08 0.741 57.75
16 3 30 0.38 265 195 22 46.73 16.01 0.704 49.86
17 19 25 0.24 257.5 180 20 31.83 15.99 0.756 74.82
18 9 25 0.24 257.5 180 20 31.20 16.58 0.725 75.48
19 14 25 0.24 257.5 180 20 29.41 16.61 0.742 71.77
20 12 25 0.24 257.5 180 20 29.66 16.64 0.737 73.33
21 2 25 0.24 257.5 180 20 31.18 16.26 0.748 75.39

Y1 = Hardness, Y2 = moisture content, Y3 = water activity, Y4 = colour

Variable levels Responses

Factors Y1 Y2 Y3 Y4
X0 30.6395000 -1.92335000 0.73014300 0.4690960
X1 3.6493800 -0.0003385* -0.0068125* -0.004462*
X2 0.269378* 0.00651313 0.01781250 -0.0685789
X3 -3.0768700 0.00128602 0.0039375* -0.0212241
X4 10.5881000 -0.00471553 -0.01531250 -0.2626120
X5 5.1418700 -0.00298404 -0.01281250 -0.0534031
X1X3 0.8756250 0.0001942* -0.0019376* 0.0256817
X1X4 -0.6893750 0.00140833 -0.0044375* -0.009472*
X1X5 2.6493800 0.0005585* -0.0001875* -0.007490*
X2X4 -1.0368800 -0.0007490* -0.0083125* -0.0358650
X2X5 0.8093770 0.0011490* 0.0029375* -0.012742*
X3X4 -2.0956200 -0.00122528 0.0010626* -0.010905*
X3X5 -0.496874* -0.0006443* 0.0005625* 0.0292494
X4X5 -0.9318760 -0.00121300 0.0000625* -0.0379559
Y1 = Hardness, Y2 = moisture content, Y3 = water activity, Y4 = colour
*Not statistically significant coefficients at P≤0.05 (or 95% CI).

Estimated coefficients
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The interaction terms X1X2 and X2X3 were removed beforehand because they were deemed 
statistically insignificant at the 5% level.  However, many of the coefficients were also identified 
as statistically insignificant in addition to the two removed in Table 4.12. Furthermore, one can 
see that the coefficients given for Y2 and Y4 seem to be clearly wrong by orders of magnitude.  
The coefficients for Y1 and Y3, however, are correct.  

The goodness-of-fit statistics for the four responses after model refinement (based on the terms in 
Table 4.12) were given in Table 5 of the paper, and are shown here as Table 4.13.   

Table 4.13: Summary list for the four model parameters after model refinement. Table 5 of Farris 
et al (2008). 
 

 

The statistic Q2, called the power of prediction (an uncommon term), is likely equivalent to the 
more commonly used term, the predicted R2.  The term model validity and reproducibility were 
not defined in the paper.  

The ANOVA results for Y1, Y2, and Y4 are shown in Table 6 of the paper. No suitable model was 
found for Y3, the water activity (negative Q2).  These results used all terms except the two two-
factor interactions X1X2 and X2X3. The ANOVA results are reproduced here in Table 4.14.   

Table 4.14:  ANOVA table for the response of hardness, moisture content and colour. Adapted 
from Table 6 of Farris et al (2008). 
 

 
A closer look at the ANOVA results showed that the results for Y2 and Y4 are also incorrect by an 
order of magnitude.  It seems that the authors may have used the wrong data in their analysis. In 
addition, no test for curvature was done. 

 

 

Response R2 R2adj. Q2 Model validity Reproducibility
Hardness 0.977 0.991 0.930 0.794 0.992
Moisture content 0.980 0.943 0.584 0.558 0.968
Water activity 0.886 0.675 -1.023 0.529 0.828
Colour 0.995 0.986 0.965 0.941 0.980

Parameter

Source of variation DF SS MS F SS MS F SS MS F
Total 21 22553.1 1073.96 77.699 3.699 5.934 0.282
Constant 1 19714.4 19714.4 77.684 77.684 4.621 4.621
Tot. corrected 20 2838.71 141.936 0.001 6.82E-05 1.312 0.065
Regression 13 2830.45 217.727 184.52 0.001 0.0001 26.83 1.306 0.100 109.78
Residual 7 8.259 1.179 2.68E-05 3.83E-06 0.006 0.0009
Lack of fit (model error) 3 3.766 1.255 1.11 1.82E-05 6.07E-06 2.81 0.001 0.0004 0.35
Pure error (replicate error) 4 4.493 1.123 8.63E-06 2.15E-06 0.005 0.001

F0.95; 13;7 = 3.55 R2 = 0.997 R2 = 0.980 R2 = 0.995

F0.95; 3;4 = 6.59

Y1 (Hardness) Y2 (moisture content) Y4 (colour)
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The final prediction models for the three responses suggested by the authors were:  

Hardness (Y1) = 30.64 + 3.65 X1  - 3.08 X3 + 10.59 X4 + 5.14 X5 + 0.88 X1X3 – 0.69 X1X4     
                  + 2.65 X1X5 – 1.04 X2X4 + 0.81X2X5 – 2.10 X3X4 – 0.93 X4X5 

 
Moisture content (Y2) = -1.92 + 0.00651 X2 + 0.00129 X3 – 0.00471 X4 -0.00298 X5  

      + 0.00141 X1X4 – 0.00122 X3X4 – 0.00121 X4X5 

 
Colour (Y4) = 0.47 – 0.069 X2 – 0.021 X3 – 0.263 X4 - 0.053 X5 + 0.025 X1X3 – 0.035 X2X4  

     + 0.029 X3X5 – 0.038 X4X5 

 
No goodness-of-fit statistics were given for these reduced models. Also, it should be noted that the 
models given are not hierarchical and may not lead to the correct predictions. As mentioned earlier, 
all the coefficients for Y2 and Y4 are incorrect.  

 

Case Study #4.4 

Hajeeh, M. (2003): Estimating corrosion: a statistical approach. Materials and Design, 24, pp. 509-
518. 

This study used a fractional factorial design to investigate the factors that affect the corrosivity of 
seawater on aluminum-brass (Al-brass) and carbon steel (C-S) alloy pipes. The original plan was 
to investigate seven factors using a half-fraction of a two-level factorial design i.e. 27-1 design with 
64 runs.  However, the author found that since the corrosion rates for the two alloys were very 
different and the error variance for C-S alloy was larger than that of the Al-brass alloy, difficulties 
might arise in the interpretation of the estimated effects. Hence, the experiment was decomposed 
into two separate six-factor 26-1 designs instead of using alloy type as one of the factors. The six 
factors and levels used in the two designs were given in Table 1 of the paper and are reproduced 
here as Table 4.15. 

Table 4.15: Variables of the experiments and their levels. Table 1 of Hajeeh (2003). 

Variable Units Low level High level 
Temperature (T) °C 30 45 
Oxygen (O2)  Deaerated Aerated 
Urea (U) ppm 0 3.5 
Inhibitor (I) ppm 0 50 
Sulfide (S) ppm 0 2 
Chloride (C ) ppm 19500 23000 
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The 26-1 design is a resolution VI design, where all main effects and two-factor interactions are not 
aliased with any other effects or interactions. However, three-factor interactions are aliased with 
other three-factor interactions.  Although not mentioned in the paper, the defining relationships 
used for the Al-brass was I=ABCDEF, and for the C-S was I = -ABCDEF. The response measured 
for each experiment was the corrosion rate in mils per year (mpy).  The experimental design and 
the corrosion rates for the Al-brass alloy and C-S alloy were shown in Tables 2 and 3 of the paper 
and are reproduced here as Tables 4.16 and 4.17.   

Table 4.16: Experimental design and corrosion rates for Al-brass. Table 2 of Hajeeh (2003). 

 
A (aerated): the environment is full of oxygen, D (deaerated): the environment does not contain any oxygen. 

Temperature Oxygen Urea Sulfide Inhibitor Chloride Corrosion rate Replication
Expt No. (°C) (ppm) (ppm) (ppm) (ppm) (ppm) (mpy)

1 30 D 0 0 0 19500 1.1
2 45 A 0 0 0 19500 0.9 0.7
3 45 D 3.5 0 0 19500 0.3
4 30 A 3.5 0 0 19500 0.6 0.9
5 45 D 0 2 0 19500 0.7
6 30 A 0 2 0 19500 1.1
7 30 D 3.5 2 0 19500 1.6
8 45 A 3.5 2 0 19500 1.6 1.1
9 45 D 0 0 50 19500 0.2

10 30 A 0 0 50 19500 1.4
11 30 D 3.5 0 50 19500 1.1
12 45 A 3.5 0 50 19500 0.2 0.2
13 30 D 0 2 50 19500 0.4
14 45 A 0 2 50 19500 0.9
15 45 D 3.5 2 50 19500 0.4
16 30 A 3.5 2 50 19500 0.5
17 45 D 0 0 0 23000 1.3
18 30 A 0 0 0 23000 0.7 0.7
19 30 D 3.5 0 0 23000 0.3
20 45 A 3.5 0 0 23000 1.3
21 30 D 0 2 0 23000 1.1
22 45 A 0 2 0 23000 1.1
23 45 D 3.5 2 0 23000 0.2
24 30 A 3.5 2 0 23000 1.0 1.6
25 30 D 0 0 50 23000 0.1
26 45 A 0 0 50 23000 0.1
27 45 D 3.5 0 50 23000 0.1
28 30 A 3.5 0 50 23000 0.6
29 45 D 0 2 50 23000 0.3
30 30 A 0 2 50 23000 0.6
31 30 D 3.5 2 50 23000 0.9 0.24
32 45 A 3.5 2 50 23000 0.5
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Table 4.17: Experimental design and corrosion rates for carbon steel (C-S) alloy. Table 3 of Hajeeh 
(2003). 

 
A (aerated): the environment is full of oxygen, D (deaerated): the environment does not contain any oxygen. 

The effects were estimated using the GLM procedure which is part of the Statistical Analysis 
System package.  However, the standard deviation of the effects was calculated using the replicated 
observations in the experiments.  The calculations were shown in the Appendices of the paper. No 
ANOVA results, regression models, or goodness-of-fit statistics were given. 

The estimated effects for Al-brass were shown in Table 4 of the paper and are reproduced here as 
Table 4.18.  

Temperature Oxygen Urea Sulfide Inhibitor Chloride Corrosion rate Replication
Expt No. (°C) (ppm) (ppm) (ppm) (ppm) (ppm) (mpy)

1 45 D 0 0 0 19500 3.1 1.8
2 30 A 0 0 0 19500 4.3 3.6
3 30 D 3.5 0 0 19500 1.0
4 45 A 3.5 0 0 19500 6.9 3.5
5 30 D 0 2 0 19500 0.9
6 45 A 0 2 0 19500 0.3 4.7
7 45 D 3.5 2 0 19500 2.7
8 30 A 3.5 2 0 19500 4.0 7.1
9 30 D 0 0 50 19500 5.1
10 45 A 0 0 50 19500 6.9
11 45 D 3.5 0 50 19500 1.7
12 30 A 3.5 0 50 19500 4.5
13 45 D 0 2 50 19500 7.1
14 30 A 0 2 50 19500 5.4 9.2
15 30 D 3.5 2 50 19500 4.1
16 45 A 3.5 2 50 19500 10.1
17 30 D 0 0 0 23000 0.3
18 45 A 0 0 0 23000 8.2 6.0
19 45 D 3.5 0 0 23000 2.6
20 30 A 3.5 0 0 23000 5.3
21 45 D 0 2 0 23000 6.0
22 30 A 0 2 0 23000 4.8
23 30 D 3.5 2 0 23000 3.3
24 45 A 3.5 2 0 23000 1.1 1.6
25 45 D 0 0 50 23000 3.6
26 30 A 0 0 50 23000 4.0
27 30 D 3.5 0 50 23000 1.1
28 45 A 3.5 0 50 23000 5.9
29 30 D 0 2 50 23000 8.8
30 45 A 0 2 50 23000 8.1
31 45 D 3.5 2 50 23000 4.3
32 30 A 3.5 2 50 23000 6.6 8.7
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Table 4.18:  Estimates of various effects and interactions for Al-brass alloy. (Table 4 of Hajeeh 
(2003). 

 

For the Al-brass data, the author calculated the standard deviation of effects to be 0.1027 and the 
95% confidence interval as ±0.243. Hence any absolute value of estimated effect that was greater 
than 0.243 were considered statistically significant at the 5% level. The author identified the 
following effects to be statistically significant at the 5% level: 

a. Inhibitor 
b. Oxygen × urea × inhibitor + temperature × sulfide × chloride 
c. Temperature × inhibitor × sulfide +  urea × inhibitor × chloride 
d. Temperature × oxygen × urea + sulfide × inhibitor × chloride 
e. Temperature × inhibitor × chloride + oxygen × urea × sulfide 

The author also identified those effects that were statistically significant at the 10% and 20% levels 
in the paper.   

The estimate for the temperature × inhibitor × sulfide + urea × inhibitor × chloride interaction is 
missing from Table 4.18.  In any case, the three-factor interaction of temperature × inhibitor × 
sulfide should be aliased with oxygen × urea × chloride and not urea × inhibitor × chloride.  There 
are actually several other typographical errors or wrong estimates in Table 4.18.  

For the carbon-steel alloy, the effect estimates were given in Table 6 of the paper and are 
reproduced here as Table 4.19.  The author did not explain why the aliased terms were not shown, 
as in Table 4.18.  

 

Effect/Interaction Estimated effect Effect/Interaction Estimated effect
Mean 0.7250 T X O2 X U + S X I X C 0.2750
Temperature -0.1875 T X O2 X S + U X I X C 0.2125
Oxygen 0.1875 T X O2 X I + U X S X C -0.1875
Urea 0.0500 T X U X S + O2 X I X C -0.0750
Sulfide 0.1625 T X U X I + O2 X U X S -0.0500
Inhibitor -0.4125 T X I X C + O2 X U X S 0.2875
T X O2 0.2000 O2 X U X S + T X I X C -0.0750
T X U 0.0625 O2 X U X I + T X S X C -0.3250
T X S 0.0000 O2 X I X C + T X U X S -0.0625
T X I -0.1750 U X S X I + T X O2 X C -0.1250
O2 X U -0.0125 I X C -0.0625
O2 X S 0.0250 S X C -0.0125
O2 X I -0.0250 U X C 0.0000
U X S 0.1125 O2 X C 0.0125
U X I 0.0875 T X C 0.1375
S X I -0.0750 Chloride -0.1750
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Table 4.19: Estimates of main effects and interactions for carbon-steel alloy. Table 6 of Hajeeh 
(2003). 
 

 
 

The standard deviation of effects was obtained using the replicated observations and was 
calculated to be 0.663. The 95% confidence interval was ±1.523. Based on this interval, the author 
identified the following effects as significant at the 5% level: 

a. Oxygen 
b. Temperature 
c. Sulfide.  

Other effects that were statistically significant at the 20% level were identified.  However, the 
estimates given by the author are highly suspect as the mean was estimated incorrectly.  It should 
be 4.44 and not 9.78.  All other estimates seem to be incorrect as well.   

The author concluded that, for the aluminum-brass alloy, the inhibitor contributed significantly to 
decreasing corrosion rates, and there were also various significant three-factor interactions. For 
carbon-steel alloy, only oxygen, temperature, and sulfide were most significant, followed by a few 
two-factor interactions that were moderately significant.  However, given the frequency of errors 
in the paper, these conclusions may not be entirely correct.  

There was no mention of ANOVA assumption checks or whether there were any follow-up 
experiments to de-alias the three-factor interactions.  

 

 

Effect/Interaction Estimated effect Effect/Interaction Estimated effect
Mean 9.7800 T X O2 X U -0.0063
Temperature 1.8440 T X O2 X S 0.2440
Oxygen 2.0990 T X O2 X I 0.5810
Urea -0.8310 T X U X S -0.0063
Sulfide 1.7190 T X U X I 0.7810
Inhibitor 1.1310 T X S X I -0.0188
T X O2 1.0300 O2 X U X S 0.3188
T X U -0.3690 O2 X U X I 1.0810
T X S 0.1810 O2 X S X I 0.1310
T X I -0.8310 U X S X I 0.2810
O2 X U 0.9310 I X C 0.5810
O2 X S -0.9220 S X C -0.5810
O2 X I -0.8560 U X C 0.0686
U X S -0.0188 O2 X C 0.2688
U X I -0.5063 T X C 0.3440
S X I 0.9940 Chloride 0.2690
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Case Study #4.5 

Kazemi-Beydokhti, A., Hamed Azizi Namaghi, and Saeed Zeinali Heris (2013): Identification of 
the key variables on thermal conductivity of CuO nanofluid by a fractional factorial design 
approach. Numerical Heat Transfer, Part B, 64, pp. 480-495. 

This study investigated seven parameters that are responsible for change in the thermal 
conductivity of nanofluids containing copper oxide nano particles. The authors started by using a 
resolution III 27-4 fractional factorial design with eight runs and three center points and then 
augmented with a full-foldover design of another eight runs and three center points.  The total 
number of runs was 22.  The factors and levels used in the fractional factorial experiments were 
given in Table 1 of the paper and are reproduced here as Table 4.20. 

Table 4.20: Factors and levels for full-foldover fractional factorial design. Table 1 of Kazemi-
Beydokhti et al (2013). 
 

 
 

The initial fractional factorial design was a 1/16th fraction of resolution III. This means that each 
effect will be aliased with 15 other effects.  More importantly, the main effects will be aliased with 
two-factor interactions.  The defining relationship used for the design was recommended in 
standard textbooks and Design-Expert version 8.0.0.6 software which was used by the authors for 
experimental design and analysis of the data.  

The details of the experiment and how thermal conductivity measurements were taken were 
explained in the paper.  The response used was the ratio of the thermal conductivity of the 
nanofluids Knf to that of the base fluid, Kf; that is, Knf/Kf.  

The initial experimental design and the results were shown in Table 2 of the paper and are 
reproduced here as Table 4.21.  

 

 

 

Factor Unit -1 (Low) 0 (Center point) +1 (High)
[A]  Temperature C 25 35 45
[B] Particle volume fraction %vol 2 3 4
[C] APPS nm 30 40 50
[D] pH of nanofluid 2 7 12
[E] Elapsed time h 0 5 10
[F] Sonication time h 1 2 3
[G] Density of nanoparticles kg/m3 2000 4000 6000

Level
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Table 4.21: Design layout and experimental results of 27-4 fractional factorial design. Table 2 of 
Kazemi-Beydokhti et al (2013). 
 

 

 

The full foldover of the initial design to de-alias the main effects from the two-factor interactions 
were shown in Table 3 of the paper. The additional 11 runs (8 factorial + 3 center points) were put 
in a second block. The table is reproduced here as Table 4.22.  

Table 4.22: Design layout and experimental results of 27-4 full-foldover fractional factorial design. 
Table 3 of Kazemi-Beydokhti et al (2013). 
 

 

The new design now becomes a resolution IV design with main effects aliased with three-factor 
interactions. However, the two-factor interactions are still aliased with other two-factor 
interactions.   

Response
Std. Run Block A B C D E F G Knf/Kf

1 10 1 -1 -1 -1 1 1 1 -1 1.29
2 8 1 1 -1 -1 -1 -1 1 1 1.31
3 11 1 -1 1 -1 -1 1 -1 1 1.35
4 2 1 1 1 -1 1 -1 -1 -1 1.45
5 3 1 -1 -1 1 1 -1 -1 1 1.19

6 7 1 1 -1 1 -1 1 -1 -1 1.35
7 5 1 -1 1 1 -1 -1 1 -1 1.31
8 6 1 1 1 1 1 1 1 1 1.24
9 1 1 0 0 0 0 0 0 0 1.27
10 4 1 0 0 0 0 0 0 0 1.31
11 9 1 0 0 0 0 0 0 0 1.29

Factor input variable

Response
Std. Run Block A B C D E F G Knf/Kf

12 13 2 1 1 1 -1 -1 -1 1 1.4
13 22 2 -1 1 1 1 1 -1 -1 1.23
14 17 2 1 -1 1 1 -1 1 -1 1.37
15 18 2 -1 -1 1 -1 1 1 1 1.28
16 20 2 1 1 -1 -1 1 1 -1 1.42
17 14 2 -1 1 -1 1 -1 1 1 1.32
18 19 2 1 -1 -1 1 1 -1 1 1.26
19 21 2 -1 -1 -1 -1 -1 -1 -1 1.27
20 12 2 0 0 0 0 0 0 0 1.3
21 16 2 0 0 0 0 0 0 0 1.33
22 15 2 0 0 0 0 0 0 0 1.28

Factor input variable
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The authors used the standard half-normal probability plot of effects to select the likely statistically 
significant terms for the model. The ANOVA results using the selected terms were shown in Table 
4 of the paper and are reproduced here as Table 4.23.  

Table 4.23: ANOVA for selected factorial model. Table 4 of Kazemi-Beydokhti et al (2013). 
 

 
 

The authors then developed the prediction equation (Equation 1 in the paper) using all the selected 
terms shown in the ANOVA table although some of the effects such as AC and BD were not 
statistically significant at the 5% level.  

Knf/Kf = 1.31 + 0.035 A + 0.025 B – 0.019 C – 0.021 D – 0.013 E + 2.5 x 10-3 F – 0.021 G  
   + 8.75 x 10-3 AC – 0.02 AE – 0.017 AF – 0.026 AG – 8.75 x 10-3 BD 
 
The authors checked the assumptions of regression and found them to be satisfactory and 
concluded that a satisfactory model had been obtained.  No further confirmation runs were used to 
verify the model. Also, there was no mention of whether the correct two-factor interaction terms 
had been used, as they were still aliased with other two-factor interaction terms. 

Source of 
variation

Sum of 
squares df

Mean 
square F-value p-Value

Block 4.545 x 10-4 1 4.545E-04
Model 0.077 12 6.421E-03 20.17 0.0003 Significant
A 2.000E-02 1 2.000E-02 61.56 0.0001
B 1.000E-02 1 1.000E-02 31.41 0.0008
C 5.625E-03 1 5.625E-03 17.67 0.0040
D 7.255E-03 1 7.255E-03 22.69 0.0021

E 2.500E-03 1 2.500E-03 7.85 0.0264
F 1.000E-04 1 1.000E-04 0.31 0.5927
G 7.225E-03 1 7.225E-03 22.69 0.0021
AC 1.225E-03 1 1.225E-03 3.85 0.0906
AE 6.400E-03 1 6.400E-03 20.10 0.0029
AF 4.900E-03 1 4.900E-03 15.39 0.0057
AG 1.100E-02 1 1.100E-02 34.63 0.0006
BD 1.225E-03 1 1.225E-03 3.85 0.0906
Curvature 1.467E-03 1 1.467E-03 4.61 0.0690 Not significant
Residual 2.290E-03 7 3.184E-04
Lack of fit 1.621E-04 3 5.404E-05 0.10 0.9531 Not significant
Pure error 2.067E-03 4 5.167E-04
Cor total 0.081 21
Std Dev. 0.021 R2 0.9542
Mean 1.31 Adjusted R2 0.8856
C.V. % 1.64 Predicted R2 0.6908
PRESS 0.025 Adequate Precision 15.019
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Case Study #4.6 

Levingstone, T. J., Malika Ardhaoui, Khaled Benyyounis, Lisa Looney, and Joseph T. Stokes 
(2015): Plasma sprayed hydroxyapatite coatings: Understanding process relationships using 
design of experiments analysis. Surface and Coatings Technology, 283, pp. 29-36. 

This study used a fractional factorial (25-2) design to investigate the simultaneous effects of key 
plasma spray process parameters on hydroxyapatite coatings for biomedical applications. 
Hydroxyapatite is ceramic which has a similar mineral component to bone.  Hence it has many 
applications particularly in the field of dentistry and orthopaedics. The authors considered the 
effects of five plasma spray process parameters on the roughness, crystallinity, and purity of 
hydroxyapatite coatings.  The parameters and levels used in the fractional factorial design were 
shown in Table 1 of the paper and are reproduced here as Table 4.24.   

Table 4.24:  Parameter ranges selected for the screening experiment. Table 1 of Levingstone et al 
(2015).  

Parameter Unit Low level (-1) High level (+1) 
A - Current A 450 750 
B - Gas flow rate slpm/scfh 33/70 61.4/130 
C - Powder feed rate g/min 10 20 
D - Spray distance mm 80 120 
E - Carrier gas flow rate slpm/scfh 4.7/10 9.4/20 

 

The gas flow rates were given in two different units.  It seems that that authors used the second 
unit which is scfh or standard cubic feet per hour.  

Three responses were measured for each run combination.  These were roughness (µm), 
crystallinity (%), and purity (%).  The techniques and equipment used were described in the paper.  

The experimental design and the results obtained were shown in Tables 2 and 3 in the paper and 
are combined here as Table 4.25.  The defining relationship used for the resolution III fractional 
factorial (25-2) design was not mentioned in the paper but it can be deduced that it was the default 
used in Design-Expert 7.0 software package. Three centre points were added giving 11 runs for 
this screening experiment.  

According to the authors, the coating from experiment N1 was very thin and measurements of 
crystallinity and purity could not be obtained. Furthermore, the roughness values were very low. 
Hence the results for N1 were not used for further analysis.  Only experiments N2-N11 were used.  
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Table 4.25:  Plasma spray screening experimental design and responses. Combined results from 
Tables 2 and 3 of Levingstone et al (2015).  

 

 

The authors fitted only a main effects model to each of the responses using a backward elimination 
procedure in Design-Expert 7.0.  A p-value of 0.01 was used.  The regression models obtained for 
each response in coded and actual units were given in Table 4 of the paper and are reproduced 
below. 

Coded:  Roughness = 9.45 + 1.4 A – 1.17 B + 1.10 C 

Actual:  Roughness = 4.257 + 9.70417 E-003 X Current – 0.039146 X Gas flow rate  
+ 0.21912 X Powder feed rate. 
 

Coded: Crystallinity = 71.83 + 6.2 A – 5.16 D – 6.14 E 
 
Actual: Crystallinity = 91.25062 + 0.041329 X Current – 0.25797 X Spray distance  

-1.22939 X Carrier gas flow rate. 
 

Coded:  Purity = 97.93 – 0.46 C – 0.34 D – 0.59 E 
 
Actual: Purity = 102.8 – 0.09125 X Power feed rate – 0.017187 X Spray distance  

-0.11875 X Carrier gas flow rate 
 

The goodness-of-fit for each of the above models were shown in Table 5 of the paper and 
reproduced here as Table 4.26.  The authors did not mention if assumptions of regression were 
checked.  
 
 
 
 

Exp. Name
Current - 

A
Gas flow rate - 

B
Powder feed 

rate - C
Spray 

distance - D
Carrier gas 

flow rate - E Roughness Crystallinity Purity
(A) (scfh) (g/min) (mm) (scfh)  (µm) (%) (%)

N1 450 70 10 120 20 4.1
N2 750 70 10 80 10 10.55 87.6 99.4
N3 450 130 10 80 20 6.15 65.2 97.8
N4 750 130 10 120 10 8.65 81.3 98.9
N5 450 70 20 120 10 10.48 65.2 97.6
N6 750 70 20 80 20 13.4 77.4 97.7
N7 450 130 20 80 10 7.28 77.8 98.2
N8 750 130 20 120 20 11.03 65.8 96.4
N9 600 100 15 100 15 10.65 79.9 97.4

N10 600 100 15 100 15 9.48 54.9 95.5
N11 600 100 15 100 15 10.6 76.1 97.2

Variables Responses
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Table 4.26: Statistical measures of equation adequacy. Table 5 of Levingstone et al (2015). 
 

 

The statistical measures given in Table 4.26 show that the fitted main effects model seems to 
provide a good fit to the responses obtained. Hence the authors concluded that the predictive 
equations developed were satisfactory and provided a better understanding of the effect of plasma 
spray properties on the roughness, crystallinity, and purity of hydroxyapatite coatings.   

However, since the experimental design was a resolution IV design, two-factor interactions were 
all aliased with other two-factor interactions.  It is likely that there are other statistically significant 
two-factor interactions not included in the models. To this end, follow up experiments were alluded 
to by the authors.  

 

Case Study #4.7 

Lucas, Y., Antonio Domingues, Driss Driochi, and Sylvie Treuillet (2006): Design of experiments 
for performance evaluation and parameter tuning of a road image processing chain. EURASIP 
Journal on Applied Signal Processing, Article ID 48012, pp. 1-10.  

This study investigated the use of design of experiments techniques in tuning a full image 
processing chain (IPC) which is not a straightforward task. This was applied to a road image 
processing chain dedicated to road obstacles detection which has eight reconfigurable parameters 
and can be modified at any time. These parameters were shown in Table 1 of the paper and are 
reproduced here as Table 4.26.  The details of the IPC and these parameters were described in the 
paper.  

Table 4.26: Factors and levels used in the experiment. (Adapted from Table 1 of Lucas et al (2006). 
 

Factor Parameter Low Level High level 
X1 Canny-Deriche filter 0.5 1 
X2 Image amplification 33 63 
X3 Edge low threshold 5 15 
X4 Edge high threshold 15 30 
X5 Contour closing 26 30 
X6 Polygonal approximation 5 6 
X7 Little chain threshold 5 10 
X8 Slope threshold 1 3 

 

Statistical measure Roughness Crystallinity Purity
R2 0.95 0.96 0.91
Adjusted R2 0.92 0.92 0.85
Predicted R2 0.82 0.81 0.56
Adequate precision 17.776 14.902 10.44
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The authors proposed a quality evaluation criterion called the covering rate (r%) as the response 
from various combinations of the parameters.  The exact definition of r was given in the paper. 
Basically, the criterion r is dependent on the image content. A high score means that most of the 
image has been extracted, hence it was expressed as a percentage.  

The authors first considered a two-level fractional factorial (2k-p) design with 16 trials, then a 
Rechtschaffer [1] design with 37 trials, and finally a three-level factorial design (33) with 27 trials. 
Since the Rechtschaffer design is outside the scope of this Chapter and the three-level design was 
not analyzed by the authors, only the two-level fractional factorial design is presented here.  

The experimental design and response r (%) were shown in Table 2 of the paper and reproduced 
here as Table 4.27.   

 
Table 4.27: Experiment matrix-fractional factorial 28-4 design*: averaged outputs. Table 2 of Lucas 
et al (2006). 
 

 
*Table 2 of Lucas et al (2006) incorrectly stated that it is a 28-3 design.   

To obtain the response, according to the authors, each run combination was compared to 180 input 
images selected from a video sequence of over 30,000 city and motorway frames. Note that the 
experimental design was incorrectly labelled as a 28-3 design. A 28-3 design would need 32 runs not 
16. In fact, a 28-3 does not exist. The smallest number of runs possible is a 28-4 design. The authors 
did not indicate what design generators were used to obtain the 28-4 design with 16 runs.  By 
examining the run combinations, the authors have used the following design generators:  X5 = 
X2X3X4, X6 = X1X3X4, X7 = X1X2X3, X8=X1X2X4. The design was a resolution IV design. 

 

Trail X1 X2 X3 X4 X5 X6 X7 X8 r (%)
1 -1 -1 -1 -1 -1 -1 -1 -1 35.535
2 -1 -1 -1 1 1 1 -1 1 40.310
3 -1 -1 1 -1 1 1 1 -1 27.859
4 -1 -1 1 1 -1 -1 1 1 42.436
5 -1 1 -1 -1 1 -1 1 1 47.328
6 -1 1 -1 1 -1 1 1 -1 30.284
7 -1 1 1 -1 -1 1 -1 1 44.034
8 -1 1 1 1 1 -1 -1 -1 37.743
9 1 -1 -1 -1 -1 1 1 1 46.517

10 1 -1 -1 1 1 -1 1 -1 40.469
11 1 -1 1 -1 1 -1 -1 1 50.680
12 1 -1 1 1 -1 1 -1 -1 33.464
13 1 1 -1 -1 1 1 -1 -1 35.169
14 1 1 -1 1 -1 -1 -1 1 49.255
15 1 1 1 -1 -1 -1 1 -1 39.715
16 1 1 1 1 1 1 1 1 44.842
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Fitting a main effects model to the experimental data, the authors obtained the following prediction 
equation in actual units (Equation 4 in the paper):   

Y = 51.1965 + 8.65 X1 – 4.08 X6 + 4.31 X8, 

where, X1, X2, X3 are previously defined in Table 4.26.  

The significance level used was not mentioned. They chose the 3 factor model that gave the second 
lowest Mallow’s Cp (3.48) and second highest R2 (0.938), instead of the four factor model which 
gave the lowest Cp (3,36) and highest R2 (0.950), arguing that the additional factor provided only 
a marginal improvement to the fit. 

The authors also compared the tuning results and computing cost of eight different tuning methods 
of which three were based on design of experiments.  The fractional factorial design required the 
least number of runs, and optimal tuning using only the three identified significant parameters gave 
the best results. One of the reasons given for the efficiency of the experimental design approach 
was that the IPC is globally optimized.  

 

[1]  Rechtschaffer, R. L. (1967): Saturated fractions of 2n and 3n factorial designs. Technometrics, 
Vol. 9, pp. 569-575.  

 

Case Study #4.8 

Ramakrishna, D. M., T. Viraraghavan, and Yee-Chung Jin (2006): Iron oxide coated sand for 
arsenic removal: investigation of coating parameters using factorial design approach. Practice 
Periodical of Hazardous, Toxic, and Radioactive Waste Management, Vol. 10, No. 4, pp. 198-
206. 

This study investigated seven factors that affect the iron oxide-coated sand filtration process for 
removing arsenic from drinking water.  The seven factors were: coating pH (pHc), temperature 
(T), iron concentration (Fe), number of coatings (N), aging (age), pH of the solution (pHs), and 
mass of the adsorbent (M). The responses measured were the percentage removal of arsenic (V) 
and arsenic (III).  The advantages of using iron oxide-coated sand was explained in detail in the 
paper.  The experiments were carried out at room temperature in a laboratory as explained by the 
authors.   

Minitab 14 software was used for the design and analysis of the experiment. The authors used a 
resolution III seven factor two-level fractional factorial (27-4) design with two replications followed 
up by a full-foldover of this design, making it into a resolution IV design.  32 run combinations 
were used, in total. The factors and levels used were given in Table 3 of the paper and are 
reproduced here as Table 4.28.  
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Table 4.28:  Design parameters and their levels. Table 3 of Ramakrishna et al (2006). 
 

Factor Code Low level High level 
pHc A 2.0 12.0 

T B 110 °C 800 °C 
Fe C 0.1 M 2 M 
N D 1 2 

Age E 4 h 12 days 
pHs F 5 9 
M G 0.1 g 1 g 

 
The first set of experiments which consisted of 16 runs (2 replicates of a 27-4 design) were shown 
in Table 4 of the paper and are reproduced here as Table 4.29 with corrections.  In Table 4 of the 
paper, the responses were interchanged. That is, As(V) was listed as As(III), and As (III) was listed 
as As(V).   
 
Table 4.29: Fractional factorial design used in studies on removal of As(V) and As(III): Set I. 
Table 4 of Ramakrishna et al (2006). 
 

 
*Note: As(V) was incorrectly listed as As(III), and As(III) was incorrectly listed as As(V) in Table 
4 of Ramakrishna et al (2006). 
 
The first set of experiments were not statistically analyzed because all the main effects were 
confounded or aliased with two-factor interaction terms.  To de-alias the main effects from the 
two-factor interactions, a full-foldover was conducted with another 16 runs. This procedure 
converted the design into a resolution IV design. Now the main effects were aliased with three-

pHc T Fe N Age pHs M
Number A B C D=AB E=AC F=BC G=ABC As(V)* AS(III)*

1 -1 -1 1 1 -1 -1 1 90.60 58.50
2 1 1 1 1 1 1 1 4.04 19.80
3 -1 1 -1 -1 1 -1 1 51.70 52.10
4 1 -1 -1 -1 -1 1 1 59.60 20.40
5 -1 1 -1 -1 1 -1 1 60.80 44.80
6 1 -1 -1 -1 -1 1 1 57.70 22.90
7 1 1 -1 1 -1 -1 -1 49.50 12.30
8 -1 1 1 -1 -1 1 -1 8.00 1.80
9 -1 1 1 -1 -1 1 -1 12.00 0.30
10 1 1 1 1 1 1 1 0.18 9.50
11 1 -1 1 -1 1 -1 -1 60.80 45.60
12 1 -1 1 -1 1 -1 -1 86.10 47.30
13 -1 -1 1 1 -1 -1 1 98.20 73.20
14 -1 -1 -1 1 1 1 -1 65.70 32.90
15 -1 -1 -1 1 1 1 -1 74.20 25.80
16 1 1 -1 1 -1 -1 -1 57.00 37.90

% removal of
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factor interactions which can be assumed to have negligible effect. The additional 16 runs were 
given in Table 5 of the paper and are reproduced here as Table 4.30.  
 
Table 4.30: Fractional factorial design used in studies on removal of As(V) and As(III): Set II. 
Table 5 of Ramakrishna et al (2006). 
 

 
 

The authors did not provide any ANOVA results but provided the estimated effects, coefficients, 
and p-values for the main effects of both responses in Table 6 of the paper, which is reproduced 
here as Table 4.31.  

Table 4.31: Estimated effects, coefficients, and p-values. Table 6 of Ramakrishna et al (2006). 

 

From Table 4.31, the authors identified pHc, temperature, and pHs as statistically significant 
factors for As(V) removal, and pHc, temperature, pHs, and M as statistically significant factors for 

pHc T Fe N Age pHs M
Number A B C D=AB E=AC F=BC G=ABC As(V)* AS(III)*

17 1 1 -1 -1 1 1 -1 9.80 6.70
18 -1 -1 -1 -1 -1 -1 -1 43.20 15.10
19 1 -1 1 1 -1 1 -1 10.70 16.40
20 -1 1 1 1 1 -1 -1 57.20 14.40
21 1 -1 1 1 -1 1 -1 7.40 8.80
22 -1 1 1 1 1 -1 -1 48.50 47.30
23 -1 -1 1 -1 1 1 1 28.90 47.30
24 1 -1 -1 1 1 -1 1 9.70 10.20
25 1 -1 -1 1 1 -1 1 12.00 28.50
26 -1 -1 -1 -1 -1 -1 -1 54.30 32.30
27 -1 1 -1 1 -1 1 1 9.60 6.70
28 -1 1 -1 1 -1 1 1 10.20 3.90
29 1 1 -1 -1 1 1 -1 5.00 4.60
30 1 1 1 -1 -1 -1 1 17.20 29.30
31 1 1 1 -1 -1 -1 1 15.20 27.40
32 -1 -1 1 -1 1 1 1 33.30 56.70

% removal of

Term Effect Coeff p-value Effect Coeff p-value
Constant 37.80 0.000 26.9 0.000
pHc -17.78 -8.89 0.043 -10.34 -5.17 0.042
Temp -23.53 -11.77 0.009 -13.94 -6.97 0.008
Fe -3.23 -1.62 0.701 9.16 4.58 0.070
N 0.07 0.04 0.993 -3.03 -1.52 0.536
Age 0.47 0.24 0.955 7.89 3.95 0.115
pHs -25.98 -12.99 0.005 -18.23 -9.12 0.001
M -5.65 -2.83 0.503 10.11 5.05 0.047
Note: The p-values in boldface are less than the level of significance chosen (0.05).

As(V) As(III)



70 
 

As(III) removal.  They provided the following fitted regression models for the percentage removal 
of As(V) and As(III) (Equations 1 and 2 in the paper, respectively): 

Percent removal of As(V) = 37.8 – 8.89 pHc – 11.8 T – 1.62 Fe + 0.04 N + 0.24 Age  
– 12.99 pHs – 2.83 M 

 

Percent removal of As(III) = 26.9 – 5.17 pHc – 6.97 T + 4.58 Fe – 1.52 N + 3.95 Age  
– 9.12 pHs + 5.05 M 

 

Note that the authors included all terms in the model regardless of whether they were statistically 
significant at the 5% level or not. No goodness-of-fit statistics were given except that both 
regression models were statistically significant at the 5% level.   

The authors concluded that the experiments were a success and only 32 experiments were needed 
instead of a full factorial design which would require 27 or 128 experiments.  

 

Case Study #4.9 

Samad, K. A., and Norazwina Zainol (2017): The use of factorial design for ferulic acid production 
by co-culture. Industrial Crops and Products, 95, pp. 202-206.  

This study investigated seven factors that influence the use of co-culture in the production of 
ferulic acid from banana stem waste. The authors used a seven-factor one-eighth fractional 
factorial (27-3) design. The seven factors and the levels used in the 27-3 design were shown in Table 
1 of the paper and are reproduced here as Table 4.32.   
 
Table 4.32: Variables and their coded and actual levels used in the method of 24 fractional factorial 
design. Table 1 of Samad et al (2017). 
 

 
 
The authors referred to the design used as a 24 fractional factorial design.  It is more proper and 
conventional to write it as a 27-3 design so that the number of factors involved and the fraction used 
are clearly indicated.  This is a resolution IV design in which main effects are aliased with three-
factor interactions and two-factor interactions are aliased with other two-factor interactions.   

No. Variables Coded Type of factor -1 +1 Units
1 Temperature A Numerical 26 40 °C
2 pH B Numerical 5.5 9.5 pH units
3 Agitation C Numerical 0 150 rpm
4 Water-to-substrate ratio D Numerical 2:1 10:1 w/w
5 Volume of inoculum E Numerical 2 10 % v/v
6 Fermentation time F Numerical 24 72 hours
7 Type of co-culture G Categorical Aa Ba

a Co-culture A (B cerus, B. pumilus and B. thuringiensis ) and B (B. cereus and B. thuringiensis ).

Actual values of coded levels
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Design-Expert 8.0.6 software was used to design and analyse the data. The design had 16 run 
combinations. The defining relationship for the fractional factorial design was not given but upon 
examination of the run combinations, it is evident that the default defining relationship in Design-
Expert was used.   
 
The response variable was the amount of ferulic acid (FA) produced, in mg/kg. The experimental 
procedure and analytical methods used in the laboratory to obtain the data were explained in the 
paper.  The fractional factorial design and the responses obtained were shown in Table 2 of the 
paper and are reproduced here as Table 4.33.  
 
Table 4.33:  The design of the 24 fractional factorial experiments. Table 2 of Samad et al (2017). 
 

 
 

According to the authors, a first order polynomial model was fitted to the experimental data.  That 
is, only a main effects model was fitted.  However, as Table 3 of the paper contains the test of 
significance of the regression coefficients, it seems that the authors to fitted a two-factor interaction 
model. Table 3 of the paper is reproduced here as Table 4.34.   

In Table 4.34, four two-factor interaction effects were shown to be statistically significant at the 
5% level. These were AC, AE, AF and BD.  However, since the experimental design was a 
resolution IV design, these two-factor interactions were aliased with other two-factor interactions. 
These aliased terms are: 

 AC=BE=DG; AE=BC=DF; AF=BG=DE; and BD=CF=EG 

 

Std A B C D E F G FA (mg/kg)
1 -1 -1 -1 -1 -1 -1 -1 87.2027
2 1 -1 -1 -1 1 -1 1 40.2194
3 -1 1 -1 -1 1 1 -1 237.364
4 1 1 -1 -1 -1 1 1 423.303
5 -1 -1 1 -1 1 1 1 56.2657
6 1 -1 1 -1 -1 1 -1 114.081
7 -1 1 1 -1 -1 -1 1 488.409
8 1 1 1 -1 1 -1 -1 263.808
9 -1 -1 -1 1 -1 1 1 133.519
10 1 -1 -1 1 1 1 -1 153.829
11 -1 1 -1 1 1 -1 1 289.284
12 1 1 -1 1 -1 -1 -1 218.093
13 -1 -1 1 1 1 -1 -1 162.206
14 1 -1 1 1 -1 -1 1 97.1652
15 -1 1 1 1 -1 1 -1 290.215
16 1 1 1 1 1 1 1 350.176

Coded values of variables
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Table 4.34: Test of significance for regression coefficients. Table 3 of Samad et al (2017). 

 

The four two-factor interaction terms were probably picked because they were listed first in 
alphabetical order by the software in the Pareto chart to select the statistically significant terms. 
The authors did not explain or consider the possibility that the other aliased terms might be the 
correct term to use.  

The authors suggested the following equations, in terms of actual factors, for the two co-cultures, 
A and B (Equations 2 and 3) in the paper, respectively.  

Co-culture A: 

FAA = 120.64 – 5.24 A + 77.73 B + 1.22 C + 29.87 D – 16.09 E – 8.69 F – 0.03 AC + 0.37 AE  
+ 0.27 AF – 4.02 BD 

 

Co-culture B: 

FAB = 164.58 – 15.24 A + 77.73 B + 1.22 C + 29.87 D – 16.09 E – 8.69 F – 0.03 AE  
+ 0.27 AF – 4.02 BD 

 

The authors stated that since the R2 was a high value of 0.9979 from the ANOVA (not shown in 
the paper), the model fitted the experimental and predicted values well. Furthermore, the study 
showed that the fractional factorial design had the ability to examine a large number of factors in 
a process with a minimal number of experimental runs.  There was no indication that the authors 
planned further experimentation to de-alias the two-factor interaction effects, in order to be more 
conclusive as to which two-factor interactions actually contributed significantly to the production 
of ferulic acid. 

Source Coefficient estimate Sum of Squares F-value p-value 
Model 212.82 259171.29 171.31 <0.0001
A - temperature -5.24 438.81 3.19 *0.1486
B - pH 107.26 184075.84 1338.41 <0.0001
C - Agitation 14.97 3585.38 26.07 0.007
D - Water-to-substrate ratio -1.01 16.33 0.12 *0.7477
E- Volume of inoculum -18.68 5581.41 40.58 0.0031
F - fermentation time 7.02 789.13 5.74 *0.0747
G - Type of co-culture 21.97 7723.90 56.16 0.0017
AC -16.25 4223.05 30.71 0.0052
AE 13.10 2746.19 19.97 0.0111
AF 45.74 33474.66 243.39 <0.0001
BD -32.13 16516.58 120.09 0.0004
Residual 550.13
Cor Total 259721.42
R2=0.9979, * Values of p-values greater than 0.05 indicating the model terms are not significant.
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______________________________________________ 
5. 3-LEVEL FACTORIAL DESIGNS 

 

Six case studies are presented in this Chapter. The case studies in this Chapter use 3-level or 3k 
factorial designs. The number of factors ranges from two to four.  

 

Case Study #5.1 

Ahmad, S., and Saeid A. Alghamdi (2014): A statistical approach to optimizing concrete mixture 
design. The Scientific World Journal, Vol. 2014, Article ID 561539, pp 1-7.  

This study used a 3-level factorial design with three factors to investigate the proportioning of 
concrete mixtures that affects the compressive strength of concrete.  The factors and levels 
investigated were shown in Table 1 of the paper and are reproduced here as Table 5.1.  

Table 5.1: Factors and levels used in the test program. Table 1 of Ahmad and Alghamdi, 2014) 

    Level   
Factor Units 1 2 3 
Cementitious materials content (QC) kg/m3 350 375 400 
Water/cementitious materials ratio (Rw/cm) by mass 0.38 0.43 0.48 
Fine/total aggregate ratio (RFA/TA) by mass 0.35 0.4 0.45 

 

Each factor was at three levels giving 27 (33) mixture combinations.  Three replicates were tested 
for each combination and the average compressive strength (f’c) in MPa at 28 days of the three 
replicates was then used as the response. The 27-run combinations, the corresponding average 28-
day compressive strength, and the standard deviation of the three replicates are shown in Table 5.2 
which is a consolidation of Tables 2 and 4 reported in the paper. 

Statistical analyses were carried out using the Minitab 13. The ANOVA results as reported in Table 
5 of the paper are based on treating each factor as a categorical variable.  This is summarized in 
Table 5.3. Goodness-of-fit statistics were not given in the paper and there was no mention of 
whether the assumptions of ANOVA were fulfilled.  

The authors then fitted a nonlinear regression model to the data and obtained the following 
equation which is Equation (1) in the paper:  

𝑓𝑓𝑐𝑐′ = −61.24 − 0.056 𝑄𝑄𝐶𝐶 − 19.87 𝐸𝐸𝐸𝐸𝐸𝐸 �2.083𝑅𝑅𝑤𝑤/𝑐𝑐𝑐𝑐 � + 183.45 𝑅𝑅𝐹𝐹𝐹𝐹/𝑇𝑇𝑇𝑇
0.119                (R2 = 0.80) 

where all terms are previously defined in Table 5.1. No other data were used for validation of the 
proposed prediction equation. 
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Table 5.2: Trial mixtures and compressive strength test results (Tables 2 and 4 of Ahmad and 
Alghamadi, 2014) 
 

Mix 
number Rw/cm QC RFA/TA f'c (MPA) s.d. (MPA) 

1 0.38 350 0.35 39.7 1.9 
2 0.38 350 0.40 38.8 1.0 
3 0.38 350 0.45 39.1 0.8 
4 0.38 375 0.35 34.1 1.2 
5 0.38 375 0.40 38.2 1.9 
6 0.38 375 0.45 40.6 2.0 
7 0.38 400 0.35 34.2 1.1 
8 0.38 400 0.40 39.3 1.1 
9 0.38 400 0.45 39.8 1.6 

10 0.43 350 0.35 27.9 1.1 
11 0.43 350 0.40 37.4 1.8 
12 0.43 350 0.45 38.5 1.1 
13 0.43 375 0.35 31.9 0.8 
14 0.43 375 0.40 37.1 1.3 
15 0.43 375 0.45 33.9 0.2 
16 0.43 400 0.35 26.5 1.4 
17 0.43 400 0.40 30.7 1.7 
18 0.43 400 0.45 36.5 1.6 
19 0.48 350 0.35 30.0 1.5 
20 0.48 350 0.40 32.1 1.3 
21 0.48 350 0.45 30.5 0.8 
22 0.48 375 0.35 20.7 1.8 
23 0.48 375 0.40 27.5 0.8 
24 0.48 375 0.45 29.9 0.3 
25 0.48 400 0.35 25.4 1.1 
26 0.48 400 0.40 31.0 0.2 
27 0.48 400 0.45 25.3 0.2 

Note: f’c = average 28-day compressive strength in MPa, s.d. = standard deviation of 3 replicates 
of each mixture in MPa. 
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Table 5.3:  ANOVA results assuming all factors are categorical (after Table 5 of Ahmad 
Alghamadi, 2014). 
 

Source df SS MS F-ratio p-value Significance 
QC 2 39.672 19.836 1.986 0.199 No 
Rw/cm 2 464.501 232.251 23.257 0.000 Yes 
RFA/TA 2 135.281 67.641 6.773 0.019 Yes 
QC*Rw/cm 4 23.686 5.922 0.593 0.678 No 
QC*RFA/TA 4 4.993 1.248 0.125 0.969 No 
Rw/cm*RFA/TA 4 22.437 5.609 0.562 0.697 No 
Error 8 79.890 9.986    
Total 26 770.460         

Note: Table 5.3 has been corrected for typographical errors.  Significance level was at the 5% 
level.  

The regression model for compressive strength was subsequently used for optimization of the 
concrete mixture proportions using Microsoft Excel Solver to optimize the levels of Rw/cm and 
RFA/TA to achieve the maximum possible compressive strength at various levels of QC, and for 
optimizing the levels of Rw/cm and RFA/TA to achieve different target compressive strengths at 
different levels of QC. The results are given in the paper.  

The authors reported that their proposed statistical approach obtained optimum values of 
water/cementitious materials and fine/total aggregate ratios with higher compressive strength at a 
lower cementitious materials content resulting in significant cost savings in concrete production.  

The reader is suggested to fit a quadratic model to the data using linear regression and compare 
the results with those obtained by the authors.  

 

Case Study #5.2: 

Alsobaai, Ahmed Mubarak (2013): Thermal cracking of petroleum residue oil using three level 
factorial design. Journal of King Saud University – Engineering Sciences, 25, pp. 21-28. 

This study investigated the thermal cracking of petroleum residue in a high-pressure reactor under 
various conditions. Three factors were investigated, namely, temperature, reaction time, and 
pressure.  The experimental design was a three-factor three-level factorial design with five centre 
points.  The factors and levels used in the experiments were shown in Table 3 of the paper and are 
reproduced here as Table 5.4.   

A total of 33 + 5 = 32 run combinations were used.  Five responses in weight percentage (wt%) 
were measured for each run combination. These were the conversion rate, X, the yield of total 
distillate fuels, Y, and the yield of the each of the distillate fractions, Y1 (gasoline), Y2 (kerosene) 
and Y3 (diesel).  How each yield is obtained was explained in the paper.  
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Table 5.4:  Factors and levels used in the experiment. Table 3 of Alsobaai (2013). 

Factor Code Unit Low level (-1) Medium level (0) High level (+1) 
Temperature A °C 400 440 480 
Time B min 40 70 100 
Pressure C kPa 120 150 180 

 

Table 5.5:  The experimental results, based on the 33 full factorial design. Table 4 of Alsobaai, 
(2013).       

No.  Temp (°C) Time (min) Pressure (kPa) X (wt%) Y (wt%) Y1(wt%) Y2 (wt%) Y3 (wt%) 
1 440 40 120 71 32 7.9 9.3 14.8 
2 400 70 180 68 30 6.9 7.5 15.6 
3 400 40 120 52 27 6.2 7.1 13.7 
4 440 70 180 81 40 18.0 13.6 8.4 
5 480 100 150 88 44 14.4 16.7 12.9 
6 480 100 180 93 48 27.0 12.0 9.0 
7 480 100 120 86 43 21.3 13.2 8.5 
8 480 40 150 77 36 13.8 13.4 8.8 

9* 440 70 150 82 42 17.3 16.8 7.9 
10 400 40 180 56 28 5.4 7.3 15.3 
11 440 40 150 70 31 8.0 8.9 14.1 
12 480 70 150 90 46 22.3 13.3 10.4 
13 400 70 120 64 29 8.2 8.8 12.0 
14 480 70 180 89 44 23.1 12.9 8.0 
15 400 100 150 72 31 8.8 8.3 13.9 

16* 440 70 150 80 39 17.0 12.9 10.1 
17 400 100 120 73 33 7.9 9.2 15.9 
18 440 100 120 84 41 17.2 16.6 7.2 
19 400 100 180 74 33 10.2 8.1 14.7 
20 440 40 180 69 30 8.4 8.8 12.8 
21 440 100 180 75 33 9.5 8.9 14.6 
22 480 40 180 79 39 14.2 12.9 11.9 
23 400 40 150 55 28 7.7 7.6 12.7 

24* 440 70 150 76 35 10.0 11.2 13.8 
25 440 70 150 78 38 9.9 11.0 14.1 
26 480 40 120 67 34 12.1 12.4 9.5 
27 480 70 120 80 40 13.8 12.7 13.5 

28* 440 70 150 78 37 9.7 11.1 145.2 
29 440 70 120 76 36 9.4 11.3 15.3 
30 400 70 150 67 30 8.5 9.0 12.6 
31 440 100 150 77 36 9.8 11.2 15.0 

32* 440 70 150 75 34 9.5 11.0 13.5 
*Centre points 
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Statistical analyses were carried out using Design-Expert 6.0.3. A general second-order response 
surface model was fitted to each of the responses.  

The ANOVA results are shown in Tables 5 to 9 of  the paper, for X, Y, Y1, Y2, and Y3, respectively.  
Except for the conversion, X, no goodness-of-fit statistic was given for the other responses in the 
paper.  There is also no mention of whether the assumptions of ANOVA were fulfilled for each of 
the responses analyzed.   

The ANOVA results for the conversion, X, are shown below in Table 5.6 which is adapted from 
Table 5 of the paper.  

Table 5.6: ANOVA results for conversion, X, (wt%). 

Source of 
variation 

      Sum  
Squares DF 

Mean 
Square F-value Prob>F Comment 

Model 2729.05 9 303.23 27.25 <0.0001          Significant 
A 1568.00 1 1568.00 140.90 <0.0001  
B 882.00 1 882.00 79.26 <0.0001  
C 53.39 1 53.39 4.80 0.0394  
A2 20.26 1 20.26 1.82 0.1910  
B2 97.03 1 97.03 8.72 0.0074  
C2 1.91 1 1.91 0.17 0.6830  
AB 12.00 1 12.00 1.08 0.3103  
AC 30.08 1 30.08 2.70 0.1144  
BC 18.75 1 18.75 1.68 0.2077  
Residual 244.82 22 11.13    
Lack of fit 211.99 17 12.47 1.90 0.2469 Not significant 
Pure error 32.83 5 6.57    
Corr. Total 2973.88 31         

 

The author reported that the full quadratic model has a R2 value of 0.9177, a PRESS of 578.91, 
and predicted R2 of 0.8053 which is in reasonable agreement with the adjusted R2 of 0.8840.  
Goodness-of-fit statistics were not given for the reduced model with only statistically significant 
terms.  

The other ANOVA results are given in the paper and will not be reproduced here.  The proposed 
prediction equations in actual factors for X, Y, Y1, Y2, and Y3 are given In Equations (5) – (9) of 
the paper. They are reproduced here showing the actual factors. 

X = Conversion = -238.979 + 0.0193 Temp + 1.3812 Time – 0.2538 Pressure – 0.00409 Time2 

Y = Total distilled fuels = -38.4896 + 0.1458 Temp + 0.1056 Time + 0.0185 Pressure 

Y1 = Gasoline yield = -54.7414 + 0.1281 Temp + 0.0785 Time + 0.0346 Pressure 

Y2 = Kerosene yield = -17.1340 + 0.064722 Temp + 0.0306 Time – 0.0159 Pressure 
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Y3 = Diesel yield = 33.3251 – 0.0471 Temp – 0.003519 Time – 0.0001852 Pressure 

It should be noted that for X, the author did not refit the reduced model.  The insignificant terms 
were simply removed from the full quadratic model.  For the other responses, the author has 
included all three main effects even though some of them are not statistically significant.  

 

Case Study #5.3 

Amini, S., M. J. Nategh, and H. Soleimanimehr (2009): Application of design of experiments for 
modelling surface roughness in ultrasonic vibration turning. Proceedings Institution of 
Mechanical Engineers, Vol. 223, Part B: J. Engineering Manufacture, pp. 641-652.  

This study investigated the influence of four parameters on surface roughness of workpieces 
machined using an advanced machining technique, known as ultrasonic vibration-assisted turning 
(UAT). UAT has been shown to have several advantages over the conventional turning (CT) 
approach.  A model for predicting the surface roughness after using the UAT is desired. The 
parameters investigated were the vibration amplitude, depth of cut, feed rate, and cutting speed. A 
three-level full factorial design with four factors was used. The levels of the factors (parameters) 
used in the experiment were shown in Table 1 of the paper and are reproduced here as Table 5.7. 

Table 5.7:  Different levels of UAT parameters used in the experiments. Table 1 of Amini et al 
(2009) 
 
Factor Description Level 1 Level 2 Level 3 
a (µ m) Vibration amplitude 6 12 18 
d (mm) Depth of cut 0.3 0.6 1.0 
fr (mm/rev) Feed rate 0.11 0.20 0.40 
vc (m/min) Cutting speed 12.3 34.0 68.1 

 

The details on how the experiments were carried out were given in the paper. A smaller experiment 
involving only three factors (without vibration amplitude) was also carried out for conventional 
turning but will not be included here.   

The experiment was a 3-level full factorial experiment. Hence the number of runs used was 34 = 
81. The run combinations and surface roughness, Ra (µm)  results were shown in Table 2 of the 
paper and are reproduced here as Table 5.8.  Note that the levels for the depth of cut, feed rate, and 
cutting speed are not equally spaced. The results of the surface roughness obtained by CT are not 
shown in Table 5.8.  Minitab (version unknown) was used for the ANOVA and regression 
modelling. The authors considered three different prediction models. The first model fitted was a 
linear model with only the main effects. A quadratic model was used next, followed by a cubic 
model. A summary of the goodness-of-fit statistics for the three models are shown in Table 5.9.  
The ANOVA results for each of the models considered were also given in the paper together with 
the prediction equations.  
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Table 5.8:  Run combinations and UAT surface roughness results. Table 2 of Amini et al (2009). 

No. a (µm) d (mm) fr(mm/rev) vc (m/min)  Ra (µm) 
1 6 0.3 0.11 12.3 0.404 
2 6 0.3 0.11 34.0 0.534 
3 6 0.3 0.11 68.1 1.546 

4 6 0.3 0.20 12.3 1.592 

5 6 0.3 0.20 34.0 2.695 
6 6 0.3 0.20 68.1 3.090 
7 6 0.3 0.40 12.3 6.237 
8 6 0.3 0.40 34.0 7.396 
9 6 0.3 0.40 68.1 7.401 

10 6 0.6 0.11 12.3 2.215 
11 6 0.6 0.11 34.0 2.837 
12 6 0.6 0.11 68.1 3.142 
13 6 0.6 0.20 12.3 2.872 
14 6 0.6 0.20 34.0 4.614 
15 6 0.6 0.20 68.1 3.047 
16 6 0.6 0.40 12.3 6.811 
17 6 0.6 0.40 34.0 7.499 
18 6 0.6 0.40 68.1 5.700 
19 6 1.0 0.11 12.3 2.293 
20 6 1.0 0.11 34.0 2.187 
21 6 1.0 0.11 68.1 3.292 
22 6 1.0 0.20 12.3 2.365 
23 6 1.0 0.20 34.0 2.982 
24 6 1.0 0.20 68.1 3.543 
25 6 1.0 0.40 12.3 5.763 
26 6 1.0 0.40 34.0 5.631 
27 6 1.0 0.40 68.1 6.479 
28 12 0.3 0.11 12.3 0.683 
29 12 0.3 0.11 34.0 0.868 
30 12 0.3 0.11 68.1 0.971 
31 12 0.3 0.20 12.3 1.914 
32 12 0.3 0.20 34.0 1.713 
33 12 0.3 0.20 68.1 1.715 
34 12 0.3 0.40 12.3 6.429 
35 12 0.3 0.40 34.0 5.927 
36 12 0.3 0.40 68.1 6.057 
37 12 0.6 0.11 12.3 0.596 
38 12 0.6 0.11 34.0 0.752 
39 12 0.6 0.11 68.1 0.790 
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No. a (µm) d (mm) fr(mm/rev) vc (m/min)  Ra (µm) 
40 12 0.6 0.20 12.3 1.595 
41 12 0.6 0.20 34.0 1.644 
42 12 0.6 0.20 68.1 1.889 
43 12 0.6 0.40 12.3 6.808 
44 12 0.6 0.40 34.0 5.636 
45 12 0.6 0.40 68.1 5.980 
46 12 1.0 0.11 12.3 0.788 
47 12 1.0 0.11 34.0 0.763 
48 12 1.0 0.11 68.1 0.840 
49 12 1.0 0.20 12.3 1.750 
50 12 1.0 0.20 34.0 1.906 
51 12 1.0 0.20 68.1 1.757 
52 12 1.0 0.40 12.3 6.700 
53 12 1.0 0.40 34.0 6.955 
54 12 1.0 0.40 68.1 6.616 
55 18 0.3 0.11 12.3 1.330 
56 18 0.3 0.11 34.0 1.855 
57 18 0.3 0.11 68.1 0.729 
58 18 0.3 0.20 12.3 1.645 
59 18 0.3 0.20 34.0 2.948 
60 18 0.3 0.20 68.1 2.180 
61 18 0.3 0.40 12.3 4.910 
62 18 0.3 0.40 34.0 6.404 
63 18 0.3 0.40 68.1 7.155 
64 18 0.6 0.11 12.3 2.885 
65 18 0.6 0.11 34.0 0.743 
66 18 0.6 0.11 68.1 0.774 
67 18 0.6 0.20 12.3 2.812 
68 18 0.6 0.20 34.0 2.295 
69 18 0.6 0.20 68.1 1.682 
70 18 0.6 0.40 12.3 6.311 
71 18 0.6 0.40 34.0 6.664 
72 18 0.6 0.40 68.1 6.148 
73 18 1.0 0.11 12.3 1.530 
74 18 1.0 0.11 34.0 1.501 
75 18 1.0 0.11 68.1 1.371 
76 18 1.0 0.20 12.3 2.580 
77 18 1.0 0.20 34.0 2.134 
78 18 1.0 0.20 68.1 2.252 
79 18 1.0 0.40 12.3 7.595 
80 18 1.0 0.40 34.0 7.615 
81 18 1.0 0.40 68.1 8.019 
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Table 5.9: Summary of R2 and R2(adj) for different regression models. Table 7 of Amini et al. 
(2009). 
 
Model R2 R2 (adj) 
Linear polynomial 0.886 0.880 
Quadratic polynomial 0.933 0.919 
Cubic polynomial 0.955 0.942 

 
The authors chose the cubic polynomial (actually a reduced cubic polynomial) as the prediction 
model for Ra.  The ANOVA results for this model were shown in Table 6 of the paper and are 
reproduced here as Table 5.10. 
 
Table 5.10: ANOVA results for the cubic regression model. Table 6 of Amini et al (2009) 

Source DF SS MS F p-value 
Regression 18 432.206 24.011 73.78 0.000 
Residual error 62 20.177 0.325   
Total 80 452.383       

 

The cubic regression model given by the authors is reproduced below. This is Equation (4) in the 
paper: 

𝑅𝑅𝑎𝑎(𝜇𝜇𝜇𝜇) = −1.00 − 0.176 𝑎𝑎 + 6.10 𝑑𝑑 + 13.8 𝑓𝑓𝑟𝑟 + 0.0582 𝑣𝑣𝑐𝑐 + 0.0196 𝑎𝑎2 − 1.16 𝑑𝑑2

+ 37.1 𝑓𝑓𝑟𝑟2 − 0.000172 𝑣𝑣𝑐𝑐2 − 0.348 𝑎𝑎𝑎𝑎 − 1.34 𝑎𝑎𝑓𝑓𝑟𝑟 − 0.00392 𝑎𝑎𝑣𝑣𝑐𝑐 − 19.5 𝑑𝑑𝑓𝑓𝑟𝑟
+ 0.0166 𝑑𝑑𝑣𝑣𝑐𝑐 − 0.123 𝑓𝑓𝑟𝑟𝑣𝑣𝑐𝑐 + 1.74 𝑎𝑎𝑎𝑎𝑓𝑓𝑟𝑟 − 0.00079𝑎𝑎𝑎𝑎𝑣𝑣𝑐𝑐 + 0.0133 𝑎𝑎𝑓𝑓𝑟𝑟𝑣𝑣𝑐𝑐
− 0.0492 𝑑𝑑𝑓𝑓𝑟𝑟𝑣𝑣𝑐𝑐 

Note that several terms in this model were not statistically significant and other significant terms 
could have been added for a better fit.  The above cubic regression model was verified using four 
additional experimental runs not used in deriving the model.  The verification results were shown 
in Table 8 of the paper and are reproduced here as Table 5.11. 

Table 5.11:  Verification test results of the cubic regression model. Table 8 of Amini et al (2009). 
 

         UAT parameters   Cubic regression model  Experimental results 
a (µm) d (mm) fr(mm/rev) vc (m/min)    Ra (µm)        Ra (µm)   

6 0.5 0.14 3.78  1.38    1.37  
12 0.6 0.14 8.83  1.10    1.03  
12 0.7 0.14 10.80  1.19    1.37  
16 0.8 0.28 17.66   3.69       3.74   

The subrange results given in Table 8 of Amini et al (2009) are not shown in Table 5.11. 

Based on the four verification tests, the authors concluded that the proposed cubic regression 
model is acceptable. 
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Case Study #5.4 

Berrios, M., M.C. Gutierrez, M.A. Martin, and A. Martin (2009): Application of the factorial 
design of experiments to biodiesel production from lard. Fuel Processing Technology, 90, pp. 
1447-1451.  

This study considered the synthesis of biodiesel from lard using potassium hydroxide as a catalyst. 
A three-level full factorial design was used to investigate the effect of two factors - agitation speed 
and catalyst concentration, on the production of long-chain fatty acid methyl esters or FAME for 
short. The factors and levels used in the experiment are shown in Table 5.12.  

Table 5.12:  Factors and levels used in the biodiesel experiment. 

Factor  Description Units Low level Mid-level High level 

x1 Agitation speed rpm 400 600 800 
x2 Catalyst concentration wt % 0.6 0.9 1.2 

 

The response measured was the FAME concentration (C, % m/m) at 20 minutes. Two replications 
were used giving 2 x 32 runs or 18 experimental runs. The run combinations and experimental 
results were shown in Table 2 of the paper and are reproduced here as Table 5.13. 

Table 5.13:  Experimental matrix and FAME concentration results after 20 min. Table 2 of Berrios 
et al (2009). 

No. 
Run 

order 
Agitation speed 

(rpm) 
Catalyst 

concentration (wt%) C (% m/m) 
1 10 400 0.6 84.30 
2 11 400 0.6 84.50 
3 6 400 0.9 88.50 
4 17 400 0.9 88.70 
5 3 400 1.2 88.90 
6 4 400 1.2 88.20 
7 13 600 0.6 86.50 
8 18 600 0.6 86.70 
9 1 600 0.9 89.20 

10 7 600 0.9 89.30 
11 5 600 1.2 90.20 
12 12 600 1.2 90.30 
13 14 800 0.6 86.90 
14 16 800 0.6 86.90 
15 8 800 0.9 89.30 
16 9 800 0.9 89.40 
17 2 800 1.2 90.70 
18 15 800 1.2 90.90 

Note:  The standard deviations are not shown in this table. 
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The details of how the experiments were conducted are given in the paper. A general linear model 
(GLM) was fitted to the data and the resulting ANOVA results are shown in Table 3 in the paper. 
The authors did not mention the statistical package used for the statistical analyses. On examining 
the reported ANOVA table, some of the sum of squares values were clearly in error.  The authors 
fitted only a two-factor interaction model to the data. The corrected ANOVA table is shown in 
Table 5.14 after reanalysis using Design-Expert 12.  

Table 5.14:  ANOVA results for a two-factor interaction model. 

Source 
Sum of 

squares df 
Mean 

square F-value p-value 
Model 58.228 3 19.409 36.74 <0.0001 
Agitation speed (x1) 8.33 1 8.33 15.77 0.0014 
Catalyst concentration (x2) 49.61 1 49.61 93.91 <0.0001 
x1 * x2 0.2812 1 0.2812 0.5323 0.4778 
Residual 7.40 14 0.5283   
Lack of fit 7.26 5 1.45 93.3 <0.0001 
Pure error 0.14 9 0.0156   
Corrected total 65.62 17       

 

The authors then proposed the two-factor interaction model as the final prediction model for 
FAME.  This is Equation (1) in Berrios et al (2009), shown below. 

 
𝑦𝑦 = 78.068 + 0.007 𝑥𝑥1 + 8.653 𝑥𝑥2 − 0.003 𝑥𝑥1𝑥𝑥2 

 
where, y is the FAME concentration.  The coefficient of determination (R2) was given as 0.887.  
It is not clear why the authors selected the two-factor interaction model. Clearly the two-factor 
interaction term is not statistically significant at the 5% level.  Furthermore, there is significant 
lack of fit in the chosen model. A better model was not investigated by the authors. 

To validate the model, two additional experiments were carried out. The first case used a value of 
500 rpm for the agitation speed and 1 wt% for catalyst concentration obtaining a FAME 
concentration of 88.8%.  The predicted value using the model was 88.7%.  The second case used 
a value of 700 rpm for the agitation speed and 1 wt% for the catalyst concentration obtaining a 
FAME concentration of 88.8%. The predicted value was 89.4%.  Based on these validation results 
the authors considered the prediction model to be a sufficiently accurate representation of the 
methyl ester production from lard for the range of factors studied.  
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Case Study #5.5 

Comoglu, B. A., Cansun Filik Iscen, and Semra IIhan (2015): The anaerobic treatment of 
pharmaceutical industry wastewater in an anaerobic batch and upflow packed-bed reactor. 
Desalination and Water Treatment, 2015, pp 1-12.  

This study concerned the treatment of pharmaceutical industry wastewater before discharge into 
receiving water bodies. Pharmaceutical industry wastewater is known to contain various complex 
organic chemicals that are toxic to the environment. One of the experiments investigated the effect 
of three factors, namely, basal medium, wastewater concentration, and various types of co-
substrate, on COD removal.  A three-level full factorial design with three factors was used. The 
factors and levels used in the experiment were shown in Table 1 of the paper and are reproduced 
here as Table 5.15.  

Table 5.15: Variables and levels used in the experimental design. Table 1 of Comoglu et al ( 2015) 
 
    Levels   
Variables -1 0 1 
X1 - Basal medium (%) 5 10 15 
X2 - Wastewater (%) 25 50 75 
X3 - Cosubstrate type Propionic acid Glucose Acid mix 

 

Since this was a 33 full factorial experiment, 27 runs were required.  The basal medium and 
wastewater concentrations are numeric factors while the co-substrate type is a categorical factor. 
The co-substrate is one of three types.  The first type is a mixture of acetic-propionic-butyric acids 
or (ABP), each at various concentrations.  The second type is glucose, and the third type is 
propionic acid. The other details of the experiment were given in the paper.  

The response variable was the percentage of COD removed from the wastewater stream. The 
experiments were carried out in a batch reactor.  The 27 run combinations of the experiment 
together with the COD removal percentage is shown in Table 2.16 which is Table 2 in the paper. 
All experiments were performed in duplicate but only 27 responses were given in the paper.  

Statistical analyses were carried out using the SPSS statistical package.  The ANOVA results and 
multiple comparison tests results were given in Tables 3 and 4 of the paper and are reproduced 
here as Table 5.17. 

From the ANOVA results, the authors have treated all factors as categorical and the corrected sum 
of squares degrees of freedom is shown as 53, indicating that there were 54 data points used in the 
ANOVA. Hence the results given in Table 5.17 (Table 2 in the paper) were incomplete.  
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Table 5.16: Full factorial (33) experimental design and results of COD removal. Table 2 of 
Comoglu et al (2015) 
 

No.  Basal medium (%) Wastewater (%) Co-substrate COD removal (%) 
1 15 75 ABP 29.44 
2 15 75 Glucose 14.07 
3 15 75 Propionic acid 26.52 
4 15 50 ABP 30.53 
5 15 50 Glucose 16.00 
6 15 50 Propionic acid 80.69 
7 15 25 ABP 93.49 
8 15 25 Glucose 37.38 
9 15 25 Propionic acid 90.20 

10 10 75 ABP 28.11 
11 10 75 Glucose 15.15 
12 10 75 Propionic acid 37.38 
13 10 50 ABP 83.46 
14 10 50 Glucose 20.76 
15 10 50 Propionic acid 30.20 
16 10 25 ABP 89.94 
17 10 25 Glucose 13.02 
18 10 25 Propionic acid 72.00 
19 5 75 ABP 27.08 
20 5 75 Glucose 15.78 
21 5 75 Propionic acid 26.20 
22 5 50 ABP 80.29 
23 5 50 Glucose 32.55 
24 5 50 Propionic acid 44.62 
25 5 25 ABP 94.38 
26 5 25 Glucose 17.72 
27 5 25 Propionic acid 80.67 

 

Although it was mentioned in the paper that a regression model of the form  
 

𝑦𝑦 = 𝛽𝛽0 +  𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 +  𝛽𝛽12𝑥𝑥1𝑥𝑥2 +  𝛽𝛽13𝑥𝑥1𝑥𝑥3 +  𝛽𝛽23𝑥𝑥2𝑥𝑥3 +  𝛽𝛽123𝑥𝑥1𝑥𝑥2𝑥𝑥3 + 𝜀𝜀 
 
can be fitted to the data, no prediction equation was given in the paper.  
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Table 5.17: Variance analysis for COD removal. Table 3 of Comoglu et al (2015) 
 
Source Type III SS df  MS F p-value 
Corrected model 45969.788 26 1768.069 13.629 0.000* 
Intercept 111623.395 1 111623.395 860.416 0.000* 
Basal 122.962 2 61.481 0.474 0.628 
Wastewater 15165.682 2 7582.841 58.450 0.000* 
Co-substrate 17659.762 2 8829.881 68.063 0.000* 
Basal-wastewater 985.515 4 246.379 1.899 0.140 
Basal-cosubstrate 2293.123 4 573.281 4.419 0.007* 
Wastewater-cosubstrate 5432.023 4 1358.006 10.468 0.000* 
Basal-wastewater-cosubstrate 4310.76 8 538.845 4.154 0.002* 
Error 3502.76 27 129.732   
Total 161095.943 54    
Corrected total 49472.548 53       

 

Based on the ANOVA results, with the exception of the basal medium, the authors reported that 
the other factors and two-way interactions between basal and co-substrate, wastewater and co-
substrate, and the three-way interaction among the three factors were statistically significant at the 
5% level. 

In view of the missing duplicate data, it is not possible to replicate the authors’ results. There was 
also no mention of whether the assumptions of ANOVA were fulfilled.  

 

Case Study #5.6 

Martin-Lara, M. A., I. L. Rodriguez, G. Blazquez, and M. Calero (2011): Factorial experimental 
design for optimizing the removal conditions of lead ions from aqueous solutions by three 
wastes of olive-oil production. Desalination, 278, pp. 132-140. 

Three wastes, namely olive stone (OS), two-phase olive solid (OMS), and olive tree pruning waste 
(OTP), from olive-oil production were considered as low-cost adsorbents for lead removal from 
aqueous solutions.  Two sets of three-level factorial design each with two factors were used for 
each biosorbent. The factors studied were biosorbent dosage and pH for the first set of experiments, 
and initial lead concentration and temperature for the second of experiments. The factors and levels 
used were shown in Table 1 of the paper and reproduced here as Table 5.18. 

The responses measured were lead removal percentage and biosorption capacity after 120 minutes 
of contact time for each of OS, OMS, and OTP.  The experimental details were given in the paper 
and statistical analyses were carried out using Statgraphics Plus 5.1 software.  

The run combinations and the results for lead uptake by OS, OMS, and OTP using the factors 
biosorbent dosage (g/L) and pH in the first set of experiments were shown in Table 2 of the paper 
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and reproduced here as Table 5.19.  For the second set of experiments, the run combinations and 
results were shown in Table 4 of the paper and are reproduced here as Table 5.20. The same 
responses were used but with the initial lead concentration and temperature as factors. The 
experiments were run in random order and in duplicate. Hence there were 2 x 32 = 18 runs per 
response.  

Table 5.18:  Factors and levels used in the experimental design. Table 1 of Martin-Lara et al (2011) 
 
Factor Symbol Low level Center level High level 
    (-1) (0) (+1) 
Biosorbent dosage, g/L X1 2 10 22 
pH X2 4 5 6 
[Pb]initial, mg/L X3 10 40 70 
Temperature, C X4 25 40 60 

  

Note: only X1 and X2 were used in the first set of experiments, and only X3 and X4 were used in 
the second set of experiments. Some of the factor levels are not equally spaced. 

Table 5.19: First experimental factorial design for lead uptake by OS, OMS, and OTP.  Table 2 
of Martin-Lara et al (2011). 
 

 

Note:  The factors in Table 5.19 and 5.20 are listed here as actual factors instead of coded factors 
in Tables 2 and 3 of the paper. 

Run
Two-phase olive mill solid (OMS)

Biosorbent pH Removal (%) Biosorption Removal (%) Biosorption Removal (%) Biosorption

dosage capacity (mg/g) capacity (mg/g) capacity (mg/g)
1 2 4 29.00 1.450 57.30 2.865 90.00 4.500
2 10 4 69.42 0.694 88.90 0.889 97.00 0.970
3 22 4 73.30 0.333 87.00 0.395 93.50 0.425
4 2 5 49.80 2.490 52.50 2.625 92.00 4.600
5 10 5 77.30 0.773 83.40 0.834 98.00 0.980
6 22 5 76.00 0.345 88.40 0.402 94.60 0.430
7 2 6 69.90 3.495 61.90 3.095 89.80 4.490
8 10 6 79.80 0.798 88.04 0.880 96.60 0.966
9 22 6 79.10 0.360 85.10 0.387 95.00 0.432

10 2 4 28.35 1.418 56.70 2.835 89.60 4.480
11 10 4 68.20 0.682 88.10 0.881 96.40 0.964
12 22 4 72.90 0.331 86.60 0.394 92.10 0.419
13 2 5 48.90 2.445 51.50 2.575 91.40 4.570
14 10 5 77.10 0.771 82.60 0.826 97.80 0.978
15 22 5 75.00 0.341 88.00 0.400 94.00 0.427
16 2 6 69.10 3.455 62.10 3.105 89.40 4.470
17 10 6 79.40 0.794 87.20 0.872 96.40 0.964
18 22 6 79.20 0.360 84.90 0.386 94.40 0.430

Olive Stone (OS)
Factors Biosorbent

Olive tree pruning (OTP)
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Table 5.20: Second experimental factorial design for lead uptake by OS, OMS, and OTP. Table 4 
of Martin-Lara et al (2011). 
 

 

 

Second-order response surface models with two independent variables (Xi and Xj) were fitted to 
each of the responses.  The model is of the form: 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏𝑖𝑖𝑋𝑋𝑖𝑖 + 𝑏𝑏𝑗𝑗𝑋𝑋𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖2 + 𝑏𝑏𝑗𝑗𝑗𝑗𝑋𝑋𝑗𝑗2 + 𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗  

where, i and j are 1 and 2, respectively for the first set of experiments, and 3 and 4, respectively, 
for the second set of experiments.  Note that in the paper, the models for the second set of 
experiments were erroneously stated in terms of 1 and 2 instead of 3 and 4.   

The models’ coefficients for each response were tabulated by the authors in Tables 3 and 5 for the 
first and second set of experiments, respectively. These are reproduced here with corrections as 
Tables 5.21 and 5.22. There was no indication if there was lack of fit or if the assumptions of 
regression were checked. The R2 values reported were for the full models only.  Some of the 
responses should have been log-transformed.  

The authors concluded that the developed regression models for predicting lead removal and lead 
biosorption capacity fitted the experimental data very well.  

 

 

Run
Two-phase olive mill solid (OMS)

[Pb]initial Temp Removal (%) Biosorption Removal (%) Biosorption Removal (%) Biosorption
capacity (mg/g) capacity (mg/g) capacity (mg/g)

1 10 25 77.30 0.773 83.40 0.834 98.00 0.980
2 40 25 74.50 2.980 59.02 2.362 90.90 3.636
3 70 25 49.07 3.435 44.00 3.080 86.30 6.041
4 10 40 73.00 0.730 60.00 0.600 80.60 0.806
5 40 40 70.53 2.821 55.25 2.210 88.48 3.539
6 70 40 35.17 2.462 38.00 2.660 75.83 5.308
7 10 60 76.50 0.765 52.50 0.525 77.00 0.770
8 40 60 63.20 2.528 49.48 1.979 87.50 3.500
9 70 60 44.46 3.112 37.14 2.600 78.64 5.500

10 10 25 77.10 0.771 82.60 0.826 97.80 0.978
11 40 25 74.10 2.964 58.80 2.351 90.88 3.635
12 70 25 48.61 3.403 43.89 3.072 86.14 6.030
13 10 40 72.20 0.722 58.60 0.586 80.90 0.809
14 40 40 70.25 2.810 54.95 2.198 88.20 3.528
15 70 40 34.21 2.395 37.87 2.651 75.70 5.299
16 10 60 76.10 0.761 51.40 0.514 75.60 0.756
17 40 60 63.00 2.520 49.08 1.963 85.90 3.436
18 70 60 44.09 3.086 36.91 2.584 78.41 5.489

Olive Stone (OS) Olive tree pruning (OTP)
Factors Biosorbent
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Table 5.21:  First experimental design: Response function coefficients for lead removal efficiency 
and lead biosorption capacity. X1 = biosorbent dosage, and X2 = pH. Table 3 of Martin-Lara et al 
(2011). 
 

 
 

 

OS
Coefficient value Std. Deviation Coefficient value Std. Deviation

b0 -76.1917 8.5174 -1.7152 0.2877
X1 b1 9.2517 0.8584 -0.0879 0.0582
X2 b2 27.6376 9.6156 1.0245 0.3292
X1X2 b12 -0.8163 0.1371 -0.0466 0.0093
X2

1 b11 -0.1597 0.0205 0.0090 0.0014
X2

2 b22 -0.8775 0.1952 -0.0133 0.0023
R2 0.961 0.957
Standard error of est. 3.904 0.276
Mean absolute error 2.676 0.169

OMS
Coefficient value Std. Deviation Coefficient value Std. Deviation

b0 118.2520 31.6512 6.3912 1.3049
X1 b1 6.6580 0.5599 -0.3441 0.0231
X2 b2 -32.0045 9.7966 -1.2772 0.5276
X1X2 b12 -0.1596 0.0894 -0.0059 0.0036
X2

1 b11 -0.1824 0.0133 0.0105 0.0006
X2

2 b22 3.4200 1.2735 0.1383 0.0525

R2 0.979 0.994
Standard error of est. 2.547 0.109
Mean absolute error 1.804 0.075

OTP
Coefficient value Std. Deviation Coefficient value Std. Deviation

b0 58.7363 7.0036 4.9001 0.3323
X1 b1 1.1972 0.1239 -0.6848 0.0058
X2 b2 12.2772 2.8315 0.3775 0.1343
X1X2 b12 0.0579 0.0197 0.0005 0.0001
X2

1 b11 -0.0544 0.0029 0.0199 0.0001
X2

2 b22 -1.2667 0.2817 -0.0383 0.0133

R2 0.974 0.999
Standard error of est. 0.564 0.027
Mean absolute error 0.377 0.018

Removal (%) Biosorption capacity (mg/g)

Removal (%) Biosorption capacity (mg/g)

Removal (%) Biosorption capacity (mg/g)
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Table 5.22:  Second experimental design: Response function coefficients for lead removal 
efficiency and lead biosorption capacity. X3 = Initial Pb concentration, and X4 = Temperature. 
Table 5 of Martin-Lara et al (2011). 

 

OS
Coefficient value Std. Deviation Coefficient value Std. Deviation

b0 104.7230 11.8844 1.3789 0.6524

X3 b3 0.4254 0.2037 0.1353 0.0111

X4 b4 -1.5689 0.5606 -0.0980 0.0308

X3X4 b34 -0.0014 0.0025 -0.0001 0.00001

X2
3 b33 -0.0114 0.0021 -0.0012 0.00001

X2
4 b44 0.0172 0.0063 0.0012 0.00004

R2 0.957 0.974
Standard error of est. 3.975 0.210
Mean absolute error 2.582 0.147

OMS
Coefficient value Std. Deviation Coefficient value Std. Deviation

b0 128.008 10.3377 0.8101 0.1668

X3 b3 -0.6847 0.1772 0.0801 0.0028

X4 b4 -2.1388 0.4877 -0.0369 0.0078

X3X4 b34 0.0112 0.0022 -0.0001 0.00004

X2
3 b33 -0.0025 0.0018 -0.0005 0.00003

X2
4 b44 0.0146 0.0063 0.0003 0.00009

R2 0.958 0.998
Standard error of est. 3.451 0.055
Mean absolute error 2.294 0.034

OTP
Coefficient value Std. Deviation Coefficient value Std. Deviation

b0 133.432 9.33940 1.0380 0.4051

X3 b3 0.1845 0.16010 0.1130 0.0069

X4 b4 -2.0751 0.44060 -0.0610 0.0191

X3X4 b34 0.0066 0.00200 -0.0001 0.00009

X2
3 b33 -0.0067 0.00160 -0.0003 0.00007

X2
4 b44 0.0176 0.00500 -0.0007 0.0002

R2 0.877 0.997
Standard error of est. 3.121 0.136
Mean absolute error 2.144 0.091

Removal (%) Biosorption capacity (mg/g)

Removal (%) Biosorption capacity (mg/g)

Removal (%) Biosorption capacity (mg/g)
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______________________________________________ 
6. RSM: BOX BEHNKEN DESIGNS 

 

Eight case studies are presented in this Chapter. The case studies in this Chapter use RSM based 
on Box-Behnken designs (BBD). The number of factors ranges from three to six. The Box-
Behnken design is a well-known classical response surface design with three levels (-1, 0, +1) and 
there are no extreme combinations of the factors. These designs are rotatable or near rotatable. The 
main drawback of BBD is that it is not amendable to sequential experimentation unlike central 
composite designs. These designs require more runs than central composite designs except when 
the number of factors are three or four. 

 

Case Study #6.1 

Aslan, N. and Y. Cebeci (2007): Application of Box-Behnken design and response surface 
methodology for modeling of Turkish coals. Fuel, 86, pp. 90-97. 

This study applied response surface methodology to model the grinding process of some Turkish 
coals. Steel ball diameter, grinding time, and the Bond work index were three independent factors 
studied.  The Box-Behnken response surface design with three factors was used to obtain the 
experimental data for statistical analysis and modelling. The importance of studying the grinding 
process and the materials and methods used were described in the paper.  

The factors and levels used for the grinding experiment were shown in Table 4 of the paper and 
are reproduced here as Table 6.1.  Note that in the original table, the levels of the ball diameter 
were listed as 2.5, 4.0 and 5.5, however, the text and later tables showed that the levels should be 
25, 40 and 55, respectively.  

Table 6.1: The levels of variables chosen for the Box-Behnken design. Corrected Table 4 of Aslan 
et al (2007). 
 

 

The response measured from the experiment was the 80% passing size (d80) in three size fractions 
(coarse, middle, and fine) of the coal.  They were:  y1 = -3350 + 1700 (µm), y2 = -1700 + 710 
(µm), and y3 = -710 (µm).  
 

Variable Symbol
Low (-1) Center (0) High (+1)

Ball diameter d, (mm) x1 25 40 55
Grinding time t, (min) x2 2 6 10
Bond work index Wi, (kWh/t) x3 12 17 22

Coded variable level
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For three factors, the Box-Behnken design required 15 runs which included three center points. 
The Box-Behnken design and the experimental results were shown in Table 5 of the paper and are 
reproduced here as Table 6.2.   MATLAB 7.1 was used for the regression analysis.   
 
Table 6.2: Box-Behnken design with actual/coded values for three size fractions and results. 
Corrected Table 5 of Aslan et al (2007). 
 

 

 
The authors fitted a full second-order regression model consisting of linear, quadratic, and two-
factor interaction terms to each of the responses. The ANOVA results were not given hence there 
was no information on whether the estimated regression coefficients were statistical significant or 
not. Only the regression models were given together with the R2 values. No other goodness-of-fit 
statistics were given and there was no mention of any regression assumption checks.  
 
For y1 = -3350 + 1700 µm size fraction, the model equation in coded units given by the authors 
(Equation 7 in the paper) was:  
 
𝑦𝑦1 = 850 − 21.25 𝑥𝑥1 − 568.75 𝑥𝑥2 + 105 𝑥𝑥3 + 447.5 𝑥𝑥12 + 297.5 𝑥𝑥22 − 365 𝑥𝑥32 + 170 𝑥𝑥1𝑥𝑥2

− 225 𝑥𝑥1𝑥𝑥3 − 7.5 𝑥𝑥2𝑥𝑥3 
 R2 = 0.96 
 
For y2 = -1700 + 710 µm size fraction, the model equation in coded units given by the authors 
(Equation 8 in the paper) was:  
 
𝑦𝑦2 = 540 + 33.13 𝑥𝑥1 − 292.5 𝑥𝑥2 + 76.88 𝑥𝑥3 + 15.63 𝑥𝑥12 + 56.88 𝑥𝑥22 + 0.63 𝑥𝑥32 + 47.5 𝑥𝑥1𝑥𝑥2

− 11.25 𝑥𝑥1𝑥𝑥3 + 22.5 𝑥𝑥2𝑥𝑥3 
 R2 = 0.98 
 

Run no.
x1 (d) (mm) x2 (t) (min) x3 (Wi) (kWh/t) -3350+1700 (µm) 1700+710 (µm) -710 (µm)

1 2.5 (-1) 2 (-1) 17 (0) 2550 910 250
2 5.5 (1) 2 (-1) 17 (0) 2100 900 370
3 2.5 (-1) 10 (1) 17 (0) 750 230 150
4 5.5 (1) 10 (1) 17 (0) 980 410 180
5 2.5 (-1) 6 (0) 12 (-1) 770 450 105
6 5.5 (1) 6 (0) 12 (-1) 840 520 180
7 2.5 (-1) 6 (0) 22 (1) 1070 625 185
8 5.5 (1) 6 (0) 22 (1) 1050 640 190
9 4.0 (0) 2 (-1) 12 (-1) 1100 830 120
10 4.0 (0) 10 (1) 12 (-1) 300 200 85
11 4.0 (0) 2 (-1) 22 (1) 1280 950 180
12 4.0 (0) 10 (1) 22 (1) 450 410 90
13 4.0 (0) 6 (0) 17 (0) 850 540 145
14 4.0 (0) 6 (0) 17 (0) 850 540 145
15 4.0 (0) 6 (0) 17 (0) 850 540 145

Experimental d80Actual and coded level of variables
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For y3 = - 710 µm size fraction, the model equation in coded units given by the authors (Equation 
9 in the paper) was:  
 
𝑦𝑦3 = 145 + 28.75 𝑥𝑥1 − 51.88 𝑥𝑥2 + 19.38 𝑥𝑥3 + 69.38 𝑥𝑥12 + 23.13 𝑥𝑥22 − 49.38 𝑥𝑥32 − 22.5 𝑥𝑥1𝑥𝑥2

− 17.5 𝑥𝑥1𝑥𝑥3 − 13.75 𝑥𝑥2𝑥𝑥3 
R2 = 0.94 

 
The experimental values were then compared to those obtained by the above regression models. 
The comparisons were shown in Table 6 of the paper and are reproduced here as Table 6.3. 
 
Table 6.3: Experimental and predicted values of d80 for three size fractions. Table 6 of Aslan et al 
(2007). 
 

 
Reanalyses of the results showed that the predicted R2 for y1 and y3 are actually quite low, 0.242 
and 0.063, respectively.  Furthermore, reduced quadratic models (using only statistically 
significant terms at the 5% level) with a logarithmic transformation on the responses gave much 
better results.   

 

Case Study #6.2 

Cai, L., Haifu Wang, and Yawei Fu (2013): Freeze-thaw resistance of alkali-slag concrete based 
on response surface methodology. Construction and Building Materials, 49, pp. 70-76. 

This study used response surface methodology based on a Box-Behnken design to investigate the 
freeze-thaw resistance of alkali-slag concrete (ASC).  Factors studied were the activator solution-
slag ratio (A/S), slag content, and sand ratio.  The preparation of the ASC was described in the 
paper.  The factors and their levels used in the experiment were shown in Table 2 of the paper and 
are reproduced here as Table 6.4.  

The primary response of interest was the frost resistance coefficient, DF, an internationally used 
evaluation index. The definition and calculation of this coefficient were given in the paper. The 
authors also studied the correlations between DF and the air bubble spacing coefficient, and 

Test No. 
Experimental, d80 (µm) Predicted, d80 (µm) Experimental, d80 (µm) Predicted, d80 (µm) Experimental, d80 (µm) Predicted, d80 (µm)

1 2550 2355 910 919 250 238
2 2100 1973 900 890 370 340
3 750 778 230 239 150 179
4 980 1175 410 400 180 192
5 770 841 450 469 105 103
6 840 814 520 490 180 188
7 1070 1066 625 578 185 169
8 1050 1050 640 688 190 199
9 1100 1224 830 802 120 134
10 300 131 200 239 85 65
11 1280 1479 950 978 180 208
12 450 296 410 371 90 69
13 850 850 540 540 145 145
14 850 850 540 540 145 145
15 850 850 540 540 145 145

-3350+1700 (µm) 1700+710 (µm) -710 (µm)
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between DF and the specific surface area. However, the air bubble spacing coefficient and specific 
surface area were not modelled using regression analysis. Hence, they will not be considered in 
this case study. The primary focus is on DF.  

 
Table 6.4: Levels of factors of RSM. Table 2 of Cai et al (2013). 
 

 

The experimental design was based on a three-factor Box-Behnken design with five center points. 
The total number of runs was 17. The experimental design and results for DF were shown in Table 
3 of the paper. These are reproduced here as Table 6.5 with the results of the air bubble spacing 
coefficient, air bubble specific surface area, and grades of freeze-thaw resistance (all equal to 
F300). Design-Expert (version unknown) was used for the design and analysis of the experiment.  

Table 6.5: Design of tests based on BBD and test results. Extracted from Table 3 of Cai et al 
(2013). 
 

 
 

The authors indicated that a standard second-order response regression model consisting of linear, 
quadratic, and two-factor interaction terms were fitted. The ANOVA table without the individual 

Factor Code
-1 0 1

A/S A 0.54 0.56 0.58
slag /(g/cm3) B 0.4 0.42 0.44
sand ratio C 0.32 0.34 0.36

Levels of code

Test No.
A B /(g/cm3) C DF /%

1 -1 -1 0 92.2
2 1 -1 0 83.1
3 1 0 -1 84.0
4 0 0 0 91.3
5 1 0 1 86.6
6 0 0 0 90.7
7 0 0 0 91.4
8 0 1 -1 90.3
9 -1 0 1 93.2
10 0 -1 1 88.4
11 1 1 0 89.3
12 -1 0 -1 91.1
13 0 -1 -1 86.2
14 -1 1 0 98.1
15 0 0 0 90.3
16 0 1 1 92.7
17 0 0 0 91.7

Design of tests
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model terms was shown in Table 4 of the paper and is reproduced here as Table 6.6.  The 
significance tests of the regression coefficients were shown in Table 5 of the paper and are 
reproduced here as Table 6.7.  

Table 6.6: Variance analysis of the model. Table 4 of Cai et al (2013). 
 

 
 
 
Table 6.7: Significance test of the regression coefficients. Table 5 of Cai et al (2013). 
 

 
Note that the authors did not include the two-factor interactions of AC and BC in the model and 
they added the A2B term, which is not typical in response surface modelling.  No explanation was 
given for the choice of model. Furthermore, the responses seem to have been multiplied by 10 
before analysis. The regression model for DF given by the authors (Equation 3) was: 

   DF = 910.80 – 39.5A + 21.00B + 11.63C + 0.75AB – 5.40A2 + 1.35B2 – 18.15C2 + 9.25A2B 

More accurately, the above equation is for 10DF. The adjusted R2 was 0.9659. No other goodness-
of-fit statistics were given. From Table 6.7, many of the model terms are not statistically significant 
at the 5% level.  A reduced model using only statistically significant terms would have given a 
better model.  

 

 

 

 

Source Sum squares df Mean square F-value p-value
Model 20547.21 8 2568.40 57.61 <0.0001
Residual error 356.67 8 44.58
Lack of fit 227.87 4 56.97 1.77
Pure error 128.80 4 32.20
Total 20903.88 16

Term Regression coefficient Std Dev. Lower C.I. of 95% Upper C.I. of 95% P-value
A -39.5 2.36 -44.94 -34.06 <0.0001
B 21 3.34 13.30 28.70 0.0002
C 11.63 2.36 6.18 17.07 0.0012
AB 0.75 3.34 -6.95 8.45 0.8279
A2 -5.4 3.25 -12.90 2.10 0.1356
B2 1.35 3.25 -6.15 8.85 0.6891
C3 -18.15 3.25 -25.65 -10.65 0.0005
A2B 9.25 4.72 -1.64 20.14 0.0858
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Case Study #6.3 

Jalali, M. R. and Mohammad Amin Sobati (2017): Intensification of oxidative desulfurization of 
gas oil by ultrasound irradiation: Optimization using Box-Behnken design (BBD). Applied 
Thermal Engineering, 111, pp. 1158-1170. 

This study used response surface methodology via a Box-Behnken design to investigate the effect 
of three influential parameters on the sulfur removal of gas oil in an ultrasound assisted oxidative 
desulfurization (UAOD) process. The details of the process and the experimental setup were 
described in the paper.  The factors investigated and levels used in the experiment were shown in 
Table 3 of the paper and are reproduced here as Table 6.8.   

Table 6.8: Experimental range and factor level of process variables applied in the experimental 
design. Table 3 of Jalali et al (2017). 
 

 

A Box-Behnken response surface design for three factors and five center points was used. The 
response of interest was the sulfur removal percentage from the gas oil. Design-Expert 7.0.0 was 
used for the design and analysis of the experiment.  

Table 6.9: Box-Behnken design with experimental and predicted response for UAOD of gas oil. 
Table 4 of Jalali et al (2017). 
 

 

Independent variables Coded variables
-1 0 1

Oxidant to sulfur molar ratio x1 10 30 50
Formic acid to oxidant molar ratio x2 2 3 4
Sonication time (min) x3 2 16 30

Range and levels

Run

x1 x2 x3

Oxidant to Sulfur 
molar ratio

Acid to oxidant 
molar ratio

Sonification 
Time (min) Experimental Std. Dev Predicted Error (%)

1 0 0 0 30 3 16 86.15 0.31 85.47 0.79
2 0 1 1 30 4 30 82.62 0.43 81.44 1.43
3 0 0 0 30 3 16 86.20 0.38 85.47 0.85
4 0 0 0 30 3 16 84.03 0.67 85.47 1.71
5 1 1 0 50 4 16 86.29 0.36 86.59 0.35
6 0 0 0 30 3 16 85.70 0.47 85.47 0.27
7 1 0 -1 50 3 2 78.37 0.72 78.17 0.26
8 1 0 1 50 3 30 88.28 0.52 89.19 1.03
9 0 0 0 30 3 16 85.66 0.41 85.47 0.22
10 -1 0 -1 10 3 2 66.06 0.62 65.17 1.35
11 1 -1 0 50 2 16 83.85 0.51 82.87 1.17
12 -1 -1 0 10 2 16 65.50 0.58 64.51 1.51
13 0 -1 -1 30 2 2 55.66 0.37 56.86 2.16
14 -1 0 1 10 3 30 80.45 0.39 80.67 0.27
15 -1 1 0 10 4 16 82.44 0.68 83.43 1.20
16 0 1 -1 30 4 2 81.40 0.33 81.32 0.10
17 0 -1 1 30 2 30 83.17 0.56 83.26 0.11

Coded values Sulfur removal (%)Real varaibles
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The experimental design and the results were shown in Table 4 of the paper and are reproduced 
here as Table 6.9.  A full-second order regression model consisting of linear, quadratic, and two-
factor interaction terms were fitted to the response as a function of the three factors.  The ANOVA 
results together with the goodness-of-fit statistics were shown in Tables 5 and 6 of the paper. These 
tables are combined here as Table 6.10.  

Table 6.10: Analysis of variance (ANOVA) for the response surface quadratic model and 
goodness-of-fit statistics. Tables 5 and 6 of Jalali et al (2017). 
 

 
 

The prediction model, in terms of coded units, proposed by the authors was given as Equation 7 in 
the paper and is reproduced here: 

𝑌𝑌 (Sulfur removal, %)
= 85.47 + 5.38 𝑥𝑥1 + 5.66 𝑥𝑥2 + 6.63 𝑥𝑥3 − 3.8 𝑥𝑥1𝑥𝑥2 − 1.12 𝑥𝑥1𝑥𝑥3 − 6.57 𝑥𝑥2𝑥𝑥3
− 1.77 𝑥𝑥12 − 4.35 𝑥𝑥22 − 5.40 𝑥𝑥32 

Note that the term x1x3 was not statistically significant at the 5% level but was included in the 
model. Assumptions of regression were checked and found to be fulfilled. The predicted values 
for each run combination of the experiment were also shown in Table 6.9, together with the 
absolute percentage error. The model was validated using three repeated runs at the optimum 
oxidation condition with x1=46.36, x2=3.22, and x3=19.81 at constant temperature of 50 °C, 
ultrasound power per gas volume of 7.78, and 1 extraction stage. The predicted value was 89% 
and the average of the three experimental values was 87.01% with a standard deviation of 0.423% 
which was deemed accurate by the authors. 

 

Source Sum of squares DF Mean square F-value P-value
Model 1311.00 9 145.67 105.18 <0.0001
x1 231.44 1 231.44 167.11 <0.0001
x2 256.25 1 256.25 185.03 <0.0001
x3 351.48 1 351.48 253.79 <0.0001
x1.x2 57.76 1 57.76 41.7 0.0003
x1.x3 5.01 1 5.01 3.62 0.0989
x2.x3 172.79 1 172.79 124.77 <0.0001
x1

2 13.21 1 13.21 9.54 0.0176
x2

2 79.66 1 79.66 57.52 0.0001
x3

2 122.94 1 122.94 88.77 <0.0001
Residual 9.69 7 1.38
Lack of fit 6.66 3 2.22 2.93 0.1631
Pure error 3.03 4 0.76
Cor total 1320.70 16

Std dev. 1.18     R-squared 0.9927
Coefficient of variation (C.V. %) 1.47     Adjusted R-squared 0.9832
Adequate precision 35.816     Predicted R-squared 0.9157
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Case Study #6.4 

Kilickap, E. and Mesut Huseyinoglu (2010): Selection of optimum parameters on burr height using 
response surface methodology and genetic algorithm in drilling of AISI 304 stainless steel. 
Materials and Manufacturing Processes, 25, pp. 1068-1076. 

This study investigated the optimum parameters on burr height using two methodologies. One was 
based on response surface methodology and another on genetic algorithm. This case study will 
only consider the method based on response surface methodology via a three-factor Box-Behnken 
design. The influence of cutting parameters – cutting speed, feed rate, and the point angle was 
investigated.  The response was the burr height. The burr height is an important consideration in 
drilling of mechanical components.  This study used a SX XHMT vertical drilling machine and 
AISI 304 stainless steel for the drilling experiments. The factors and levels used in the experiment 
were shown in Table 5 of the paper and are reproduced here as Table 6.11.   

Table 6.11: Experimental factors and their levels. Table 5 of Kilickap et al (2010). 
 

 

The three-factor Box-Behnken design consisted of 12 runs and five center points. The design and 
the resulting burr heights were shown in Table 6 of the paper. The table is reproduced here as 
Table 6.12. Design-Expert 6.0 was used for the design and analysis of the experiment.  

Table 6.12: Design matrix and observed values of butt height. Table 6 of Kilickap et al (2010). 

 

Symbol Drilling parameter Level 1 (-1) Level 2 (0) Level 3 (+1)
A Cutting speed, V (m/min) 4 8 12
B Feed rate, f (mm/rev) 0.1 0.2 0.3
C Point angle, Ɵ (°) 90 (1) 118 (2) 135 (3)

Trial No. Cutting speed Feed rate Point angle Burr height (mm)
1 -1 -1 0 0.72
2 1 -1 0 1.40
3 -1 1 0 1.24
4 1 1 0 2.08
5 -1 0 -1 1.25
6 1 0 -1 2.10
7 -1 0 1 0.82
8 1 0 1 1.45
9 0 -1 -1 0.99
10 0 1 -1 1.80
11 0 -1 1 0.74
12 0 1 1 1.42
13 0 0 0 1.44
14 0 0 0 1.44
15 0 0 0 1.44
16 0 0 0 1.44
17 0 0 0 1.44
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A quadratic model was suggested by the software.  The ANOVA results for the quadratic model 
were shown in Table 8 of the paper, together with the goodness-of-fit statistics. This table is 
reproduced here as Table 6.13. No attempt was made by the authors to reduce the model.  

Table 6.13: ANOVA table for response surface quadratic model. Table 8 of Kilickap et al (2010). 
 

 

 

The prediction equation in actual factors for the burr height (H) was given as (Equation 5 in the 
paper): 

H (mm) = -0.38 + 0.0575 A + 8.1625 B + 0.27625 C + 2.7343 E-03 A2 – 12.375 B2 – 0.07875 C2  
       + 0.10 AB – 0.01375 AC – 0.325 BC. 
 
Note that the levels for the point angle (factor C) must be entered as 1, 2, and 3, and not as the 
actual angles given in Table 6.11. Five of the regression coefficients were actually statistically 
insignificant at the 5% level.  These terms could have been removed for a better model.  
 
The authors concluded that to achieve minimum burr height, a combination of low cutting speed 
and low feed rate with a larger point angle must be used in the drilling process.  
 
 
 
 
 
 
 
 
 
 

Source Sum of Squares df Mean Square F-value p-value
Model 2.52 9 0.28 54.35 < 0.0001 significant
A-A 1.13 1 1.13 218.6 < 0.0001
B-B 0.90 1 0.90 175.76 < 0.0001
C-C 0.37 1 0.37 71.02 < 0.0001
A² 8.059E-03 1 8.059E-03 1.57 0.2510
B² 0.064 1 0.064 12.53 0.0095
C² 0.026 1 0.026 5.07 0.0590
AB 6.40E-03 1 6.400E-03 1.24 0.3016
AC 0.012 1 0.012 2.35 0.1691
BC 4.225E-03 1 4.225E-03 0.821 0.3950
Residual 0.036 7
Cor Total 2.55 16
S.D. 0.072     C.V. 5.25     R2 0.9859    Pred. R2     0.7743
Mean 1.37      PRESS 0.58     Adj. R2 0.9678     Adeq. Precision  25.854
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Case Study #6.5 

Liu Junyan, Lin Li, Lizhen Zhou, Bing Li, and Zhenbo Xu (2017): Effect of ultrasound treatment 
conditions on Saccharomyces cerevisiae by response surface methodology. Microbial 
Pathogenesis, 111 pp. 497-502. 

This study used response surface methodology via a Box-Behnken design to investigate the effect 
of different ultrasound treatment conditions on the inactivation of Saccharromyces cerevisiae, a 
potential pathogen in the food industry. In particular, three factors were studied – ultrasonic power 
level, irradiating time, and the pulse duty ratio.  The authors also investigated the effect of different 
cell concentration, pH and temperature but these factors were not part of the experiment.  The 
definition of terms and methods and materials used for the experiment were described in the paper. 
The three factors and their levels used in the experiment are summarized in Table 6.14. 

Table 6.14: Factors and levels used in the experiment. 
 

 

 
Table 6.15: Box-Behnken experimental design and results. Table 1 of Liu et al (2017). 
 

 
 
 

Symbol Variables Low (-1) Middle (0) High (+1)
X1 Ultrasonic power (W) 82.3 246.8 411.4
X2 Irradiating time (min) 4 8 12
X3 Pulse duty ratio 0.1 0.5 0.9

Run number Response value
Power (X1) Time (X2) Pulse duty ratio (X3) Y

1 246.8 4 0.1 3.11
2 82.3 12 0.5 2.11
3 246.8 8 0.5 3.09
4 82.3 4 0.5 0.56
5 246.8 12 0.1 4.23
6 246.8 4 0.9 3.55
7 246.8 8 0.5 3.12
8 246.8 12 0.9 4.4
9 246.8 8 0.5 3.35
10 82.3 8 0.1 1.67
11 82.3 8 0.9 1.56
12 411.4 12 0.5 5.97
13 411.4 8 0.9 5.48
14 246.8 8 0.5 3.21
15 411.4 4 0.5 5.25
16 411.4 8 0.1 5.65
17 246.8 8 0.5 3.22

Independent variables
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A three-factor Box-Behnken design with five center points (total of 17 points) was used for the 
experiment. Design-Expert 7.0 was used for the design and subsequent analysis of the results.  The 
response was based on a plate counting method to identify ultrasound treatment efficiency. The 
response Y was expressed as –lg(N/N0), where, N0 is the initial cell number and N is the cell 
number in the sample after different treatments. The average of at least three plates was used as 
the response.  The experimental design and the results were shown in Table 1 of the paper and are 
reproduced here as Table 6.15.  

The authors fitted a standard second-order response surface model with linear, quadratic, and two-
factor interaction terms to the response. The ANOVA results were shown in Table 2 of the paper. 
The table is reproduced here as Table 6.16.  

Table 6.16: ANOVA results for the response surface model. Table 2 of Liu et al (2017). 
 

 
 
The prediction equation was given as Equation 2 in the paper as: 
 
𝑌𝑌 = 3.20 + 2.06𝑋𝑋1 + 0.53𝑋𝑋2 + 0.041𝑋𝑋3 − 0.21𝑋𝑋1𝑋𝑋2 − 0.015𝑋𝑋1𝑋𝑋3 − 0.068 𝑋𝑋2𝑋𝑋3 − 0.021𝑋𝑋12

+ 0.25𝑋𝑋22 + 0.37𝑋𝑋32 
 
Note that the prediction equation included all terms regardless of their statistical significance. A 
reduced quadratic model with only statistically significant terms at the 5% level would have 
provided a higher predicted R2.  

The authors concluded that ultrasound power played the most important role in the irradiation 
process of Saccharromyces cerevisiae during ultrasound treatment in the food industry.  

 

 

 

Source Sum of Squares df Mean Square F-value p-value
Model 37.18 9 4.13 141.38 < 0.0001 significant
X1 33.83 1 33.83 1157.44 < 0.0001
X2 2.25 1 2.25 76.89 < 0.0001
X3 0.014 1 0.014 0.47 0.5169
X1X2 0.17 1 0.17 5.89 0.0456
X1X3 9.00E-04 1 9.00E-04 0.031 0.8657
X2X3 0.018 1 0.018 0.62 0.4556
X1² 1.857E-03 1 1.857E-03 0.064 0.8082
X2² 0.27 1 0.27 9.26 0.0188
X3² 0.58 1 0.58 19.83 0.0030
Residual 0.20 7 0.029
Lack of Fit 0.16 3 0.054 5.24 0.0717 not significant
Pure Error 0.042 4 0.010
Cor Total 37.39 16
R-squared 0.9945 Predicted R-squared 0.9285
Adjusted R-square 0.9875
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Case Study #6.6 

Muthukumar, M., D. Mohan, and M. Rajendran (2003): Optimization of mix proportions of 
mineral aggregates using Box-Behnken design of experiments. Cement and Concrete 
Composites, 25, pp. 751-758. 

This study investigated the optimal mix proportions of silica aggregates for use in polymer 
concrete using a six-factor Box-Behnken response surface design. The six factors were the six 
different grades of particle sizes ranging in size from 0.15 to 9.72 mm. The primary objective was 
to determine what combination of particle sizes would minimize the void content of the resulting 
concrete. The materials and methods used for the experiment were described in the paper. The 
factors and levels used in the experiment were shown in Table 1 of the paper and are reproduced 
here as Table 6.17. 

Table 6.17: Levels of variables chose for the design.  Table 1 of Muthukumar et al (2003). 
 

 
 
The Box-Behnken design with the six factors used 54 run combinations (49 points and six center 
points).  Design-Expert (version unknown) was used for the design and analysis of the experiment. 
The response was the void content (%).  The experimental design together with the results were 
shown in Table 5 of the paper and are reproduced here as Table 6.18.  
 
A second-order polynomial regression was fitted to the experimental results and the ANOVA 
results were shown in Table 4 of the paper (reproduced here as Table 6.19). The prediction 
equation (in coded factors) for the void content was the full second-order polynomial equation 
given in the paper as: 
 
Predicted void content (%) = 24.81 - 1.986x1 - 1.147x2 - 0.132x3 + 1.210x4 + 1.088x5 - 0.520x6  
     + 0.602x1

2 + 0.571x2
2 + 0.239x3

2 + 0.192x4
2 + 0.684x5

2+ 1.401x6
2 + 1.155x1x2 + 0.443x1x3  

     + 0.032x1x4 - 0.791x1x5 - 0.12x1x6 + 0.899x2x3 + 0.030x2x4 - 0.712x2x5 - 0.609x2x6 - 0.375x3x4   
     - 0.981x3x5 - 0.939x3x6 - 0.281x4x5 - 0.580x4x6 + 1.336x5x6   (R2 = 0.9174) 
 
As can be seen from the ANOVA table, more than 10 of the regression coefficients were actually 
not statistically significant at the 5% level yet they were included in the prediction equation. The 
only goodness-of-fit statistic given was the R2 value of 0.9174. The adjusted and predicted R2 were 
not reported. The comparison of the experimental and predicted values were also shown in Table 
6.18.  

S. no. Grade
Min Max Low Medium High

1 A 4.76 9.52 0 (-1) 50 (0) 100 (+1)
2 B 2.38 4.76 0 (-1) 50 (0) 100 (+1)
3 C 1.19 2.38 0 (-1) 50 (0) 100 (+1)
4 D 0.60 1.19 0 (-1) 50 (0) 100 (+1)
5 E 0.30 0.60 0 (-1) 50 (0) 100 (+1)
6 F 0.15 0.30 0 (-1) 50 (0) 100 (+1)

Particle size, mm Input level, g (coded)
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Table 6.18: Box Behnken design for the six variables and their experimental and predicted 
response (% void content). Table 5 of Muthukumar et al (2003). 
 

 

Run A B C D E F Experimental response Predicted response
1 -1 -1 0 -1 0 0 30.16 29.32
2 0 -1 -1 0 -1 0 25.46 25.70
3 0 1 0 0 1 1 26.37 26.90
4 0 0 -1 1 0 1 27.83 28.20
5 0 0 -1 -1 0 1 27.62 26.19
6 1 0 0 1 -1 0 24.96 25.53
7 -1 -1 0 1 0 0 31.28 31.61
8 -1 0 1 0 0 1 27.37 27.13
9 1 0 0 1 1 0 26.12 25.56
10 1 0 -1 0 0 1 24.87 25.06
11 0 0 1 -1 0 -1 27.25 26.55
12 -1 0 -1 0 0 -1 29.41 29.07
13 0 -1 0 0 1 -1 29.53 28.99
14 -1 0 0 1 -1 0 28.08 27.85
15 1 -1 0 -1 0 0 21.96 22.97
16 1 0 0 -1 -1 0 23.83 22.48
17 -1 0 -1 0 0 1 30.66 30.15
18 0 0 1 1 0 -1 28.28 29.38
19 0 -1 1 0 1 0 27.91 27.24
20 0 -1 0 0 -1 -1 28.28 28.06
21 1 0 1 0 0 1 23.79 23.80
22 -1 0 0 1 1 0 30.12 31.05
23 0 1 1 0 1 0 25.87 25.32
24 -1 1 0 1 0 0 27.66 27.07
25 0 -1 0 0 1 1 30.28 31.84
26 0 1 0 0 -1 -1 30.28 28.41
27 0 0 0 0 0 0 25.25 24.81
28 -1 0 0 -1 -1 0 23.96 24.94
29 1 1 0 -1 0 0 22.84 22.93
30 0 0 0 0 0 0 24.33 24.81
31 0 -1 0 0 -1 1 25.62 25.57
32 0 1 0 0 -1 1 23.25 23.48
33 0 -1 1 0 -1 0 25.33 25.60
34 -1 0 0 -1 1 0 29.41 29.26
35 0 0 1 -1 0 1 24.25 24.80
36 0 1 1 0 -1 0 26.08 26.53
37 0 0 0 0 0 0 24.83 24.81
38 1 0 0 -1 1 0 23.83 23.64
39 0 0 0 0 0 0 25.33 24.81
40 0 0 1 1 0 1 26.50 25.31
41 0 1 -1 0 -1 0 22.05 23.03
42 -1 1 0 -1 0 0 24.13 24.65
43 0 -1 -1 0 1 0 31.40 31.26
44 0 0 -1 1 0 -1 28.74 28.52
45 -1 0 1 0 0 -1 29.66 29.80
46 1 0 -1 0 0 -1 24.54 24.46
47 0 0 -1 -1 0 -1 22.67 24.19
48 0 1 -1 0 1 0 26.33 25.75
49 1 0 1 0 0 -1 26.12 26.96
50 0 1 0 0 1 -1 26.12 26.49
51 0 0 0 0 0 0 24.50 24.81
52 1 -1 0 1 0 0 26.33 25.39
53 0 0 0 0 0 0 24.62 24.81
54 1 1 0 1 0 0 25.04 25.47
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Table 6.19: ANOVA for response surface quadratic model. Table 4 of Muthukumar et al (2003). 
 

 

From Table 6.19, it can be seen that the lack of fit of the fitted model was statistically significant 
at 5% level.  This lack of fit was not addressed in the paper. If a reduced quadratic model was 
fitted with only statistically significant terms, the predicted R2 would have increased from 0.578 
to 0.726.  

The authors then obtained the optimal combination to give the minimum void content. This was 
compared to the minimum void content obtained from the 54 experiments.  This comparison was 
shown in Table 6 of the paper and is shown here as Table 6.20.  

Source Sum of Squares DF Mean Square F-value p-value
Model 300.71 27 11.140 10.699 < 0.0001
x1 94.68 1 94.685 90.956 < 0.0001
x2 31.56 1 31.556 30.313 < 0.0001
x3 0.42 1 0.419 0.402 0.5315
x4 35.11 1 35.114 33.731 < 0.0001
x5 28.41 1 28.406 27.287 < 0.0001
x6 6.48 1 6.479 6.224 0.0193
x1² 3.73 1 3.730 3.583 0.0695
x2² 3.35 1 3.348 3.216 0.0845
x3² 0.59 1 0.587 0.564 0.4594
x4² 0.38 1 0.380 0.365 0.5509
x5² 4.82 1 4.817 4.627 0.0409
x6² 20.20 1 20.200 19.404 0.0002
x1.x2 10.67 1 10.672 10.252 0.0036
x1.x3 1.57 1 1.566 1.505 0.2309
x1x4 0.02 1 0.016 0.016 0.9015
x1x5 5.01 1 5.009 4.811 0.0374
x1x6 0.12 1 0.115 0.111 0.7421
x2x3 6.46 1 6.462 6.208 0.0194
x2x4 0.01 1 0.007 0.007 0.9344
x2x5 8.12 1 8.123 7.803 0.0097
x2x6 2.96 1 2.965 2.848 0.1035
x3x4 1.13 1 1.125 1.081 0.3081
x3x5 7.70 1 7.703 7.399 0.0115
x3x6 14.10 1 14.100 13.545 0.0011
x4x5 0.63 1 0.633 0.608 0.4426
x4x6 2.69 1 2.691 2.585 0.1199
x5x6 14.28 1 14.285 13.722 0.0010

Residual 27.07 26 1.041
Lack of Fit 26.24 21 1.249 7.554 0.0169
Pure Error 0.83 5 0.165
Cor Total 327.78 53
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Table 6.20: Experimental combination vs. optimized combination. Table 6 of Muthukumar et al 
(2003). 
 

 
 
Note that the optimum void content obtained using the prediction equation was not verified using 
additional experiments with the optimal combination.   

 

Case Study #6.7 

Sharifi, H., Seyed Majid Zabihzadeh, and Mohsen Ghorbani (2018): The application of response 
surface methodology on the synthesis of conductive polyaniline/cellulosic fiber 
nanocomposites. Carbohydrate Polymers, 194, pp. 384-394. 

This study investigated the effects of three critical parameters (factors) on the conductivity of 
polyaniline/cellulosic fibers nanocomposites using response surface methodology based on a Box-
Behnken design. These parameters were the surfactant type (XA), mass ratio of fibers/aniline (XB), 
and time of polymerization (XC).  The factors and their ranges were shown in Table 1 of the paper 
and are extracted here as Table 6.21.  

Table 6.21: Factors and levels used for conductivity experiment. Extracted from Table 1 of Sharifi 
et al (2018). 
 

 

The dependent or response variable was the conductivity (S m-1) of the polyaniline/cellulosic fiber 
nanocomposite. The preparation of the experimental samples and measuring of the responses were 
explained in the paper.  

A three-factor Box-Behnken design with three center points (total of 15 points) was used for the 
conductivity experiment. Design-Expert Version 6 was used for the design of the experiment and 
subsequent statistical analysis and modelling. The experimental design and results were shown in 
Table 1 of the paper and are reproduced here as Table 6.22. 

S. No. Variable
Coded Uncoded % Coded Uncoded %

1 A 1 100 40 0.81 90.5 39.6
2 B -1 0 0 0.53 76.5 33.5
3 C 0 50 20 -1 0 0
4 D -1 0 0 -1 0 0
5 E 0 50 20 -1 0 0
6 F 0 50 20 0.23 61.5 26.9

% void 21.96 21.002

Experimental combination having minimum void Optimized combination having minimum void

Coded Factors
Low (-1) Middle (0) Highg (+1)

A surfactant type anionic non ionic cationic
B mass ratio of fibers/aniline 0.5 1 1.5
C time of polymerization (hr) 4 8 12

Range and levels
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Table 6.22: Experimental design in terms of coded factors and results of the Box-Behnken design 
for conductivity of samples. Extracted from Table 1 of Sharifi et al (2018). 
 

 

A standard second-order polynomial equation (linear + quadratic + two-factor interaction terms) 
was fitted to the responses.  The ANOVA results for the full model were shown in Table 2 of the 
paper and are reproduced here as Table 6.23.  

Table 6.23: Analysis of variance (ANOVA) for the conductivity of samples from Box-Behnken. 
Table 2 of Sharifi et al (2018). 
 

 

 

Sample No.
A B C Experimental Predicted

PC-1 0 -1 1 1.060 1.114
PC-2 -1 -1 0 0.550 0.601
PC-3 -1 0 -1 0.350 0.369
PC-4 1 1 0 0.940 0.889
PC-5 0 0 0 0.650 0.624
PC-6 1 0 -1 0.823 0.883
PC-7 0 0 0 0.586 0.624
PC-8 0 1 -1 0.398 0.389
PC-9 1 0 1 1.357 1.337

PC-10 -1 0 1 0.705 0.645
PC-11 -1 1 0 0.578 0.567
PC-12 0 1 1 0.446 0.517
PC-13 0 0 0 0.637 0.624
PC-14 1 -1 0 1.475 1.486
PC-15 0 -1 -1 0.540 0.469

Conductivity (Sm-1)Factors

Source Sum of Squares df Mean Square F-value p-value
Model 1.55 9 0.1717 32.77 0.0006
A-Surfactant type 0.73 1 0.73 138.79 < 0.0001
B-Mass ratio of fibers/anil 0.20 1 0.1994 38.05 0.0016
C-Time of polymerization 0.27 1 0.2654 50.64 0.0008
AB 0.079 1 0.07924 15.12 0.0115
AC 8.010 x 10-3 1 8.010 x 10-3 1.53 0.2712
BC 0.056 1 0.056 10.63 0.0224
A² 0.19 1 0.19 37.14 0.0017
B² 3.742 x 10-3 1 3.742 x 10-3 0.71 0.4367
C² 7.532 x 10-3 1 7.532 x 10-3 1.44 0.2843
Residual 0.026 5 5.24 x 10-3

Lack of Fit 0.024 3 7.97 x 10-3 6.96 0.1281
Pure Error 2.289 x 10-3 2 1.144 x 10-3

Cor Total 1.57 14
Std. Dev. 0.072 R² 0.9833
C.V. % 9.79 Adjusted R² 0.9533
Mean 0.74 Predicted R² 0.7533
PRESS 0.39 Adeq Precision 18.882
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Based on the ANOVA results for the full model, the authors considered that fitted model was 
statistically significant and provided a very good fit. Hence, they suggested the following 
prediction equation in coded factors (Equation 4 in the paper): 

 
Conductivity = 0.62433 + 0.30150 XA - 0.15788 XB + 0.18213 XC + 0.229583 XA

2  
                      + 0.031833 XB

2 - 0.045167 XC
2 - 0.14075 XAXB + 0.04475 XAXC - 0.11800 XBXC 

 

The predicted conductivity for the same run combinations are also shown in Table 6.22. Note that 
several of the coefficients in the prediction model are not statistically significant at the 5% level. 
The adequacy of the model was checked by the authors and found to be satisfactory. A reduced 
model using only statistically significant terms would have provided a model with higher predicted 
R2.  

The authors then validated the prediction model using three additional experimental runs - one run 
for each type of surfactant.  The results were shown in Table 3 of the paper are shown here as 
Table 6.24.  

Table 6.24: Comparing the experimental and predicted values. Table 3 of Sharifi et al (2018). 

 

The interpretation of the coefficients and results were given in the paper. The optimum conditions 
maximizing conductivity were found to be: use of cationic surfactant, mass ratio of fibers/aniline 
of about 0.5, and time of polymerization of 8 hours. The maximum conductivity obtained was 
1.48587 S m-1.  The optimization technique used was not described in the paper.   

 

Case Study #6.8 

Zhang, H., Yanli Li, and Xiaogang Wu (2012): Statistical experiment design approach for the 
treatment of landfill leachate by photoelectro-fenton process. ASCE Journal of Environmental 
Engineering, Vol. 138, No. 3, pp. 278-285. 

This study investigated the influence of three different variables – ferrous ion dosage, hydrogen 
peroxide concentration, and current density on the photoelectro-Fenton process for the treatment 
of landfill leachate using response surface methodology. A Box-Behnken design was used to 
develop the prediction models for two responses – color removal and COD removal. According to 
the authors, among various advanced oxidation processes for landfill leachate treatment, the 
Fenton process has been widely used due to its simplicity and ease of implementation.  

Run no. Surfactant type Mass ratio of fibers/aniline Time of polymerization |Error (%)|
Experimenta Predicted

1 cationic 0.7 12 1.468±0.046 1.52152 3.64
2 anionic 1.1 10 0.643±0.0195 0.59153 1.9
3 non ionic 1.4 6 0.466±0.064 0.45923 1.45

a Mean ± standard deviation

Conductivity 
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The factors and levels considered in the experiment are shown in Table 6.25.  
 
Table 6.25: Factors and levels used in the landfill treatment experiment.  
 

 
A Box-Behnken design with three center points (total of 15 runs) was used to generate the design 
points. The two responses measured were: the color removal percentage (Y1) and the COD removal 
percentage (Y2). The design matrix in coded and uncoded units and the responses were shown in 
Table 1 of the paper and are reproduced here as Table 6.26.  Design-Expert software (version 
unknown) was used to design and analyze of the experiment. 

Table 6.26:  Design matrix in coded and uncoded units and the experimental responses. Table 1 
of Zhang et al (2012). 
 

 
The authors then fitted a standard second-order polynomial (linear + quadratic + two-factor 
interaction terms) to each of the responses.  The reduced ANOVA tables for Y1 (color removal 
percentage) and Y2 (COD removal percentage) were shown as Tables 2 and 3 in the paper. These 
tables are reproduced here as Tables 6.27 and 6.28, respectively.  

 
 
 
 

Factor Factor name and units
Low (-1) Middle (0) High (+1)

x1 Ferrous iron dosage (Fe2+), mmol L-1 8.75 29.75 50.75
x2 Hydrogen peroxide concentration (H2O2), mmol L-1 87.5 219.0 350.0
x3 Current density, mA cm-2 8.33 16.67 25.00

Levels

Std 
Order

Fe2+ (mmol L-1) 
(x1)

H2O2 (mmol L-1) 
(x2)

Current density (mA cm-2) 
(x3) Observed Predicted Observed Predicted

1 8.75 (-1) 87.5 (-1) 16.67 (0) 83.5 82.4 47.9 48.47
2 50.75 (+1) 87.5 (-1) 16.67 (0) 79.6 81.2 60.5 63.79
3 8.75 (-1) 350 (+1) 16.67 (0) 94.2 92.6 61.7 58.4
4 50.75 (+1) 350 (+1) 16.67 (0) 90.8 91.9 75.8 75.3
5 8.75 (-1) 219 (0) 8.33 (-1) 84.4 85.5 50.6 50.5
6 50.75 (+1) 219 (0) 8.33 (-1) 89.4 87.9 71.4 68.5
7 8.75 (-1) 219 (0) 25 (+1) 91.9 93.4 57.6 60.5
8 50.75 (+1) 219 (0) 25 (+1) 90.0 88.9 74.6 74.7
9 29.75 (0) 87.5 (-1) 8.33 (-1) 80.2 80.2 59.1 58.6

10 29.75 (0) 350 (+1) 8.33 (-1) 90.5 90.9 65.1 68.5
11 29.75 (0) 87.5 (-1) 25 (+1) 85.4 84.9 69.4 66.0
12 29.75 (0) 350 (+1) 25 (+1) 95.0 95.1 77.0 77.5
13 29.75 (0) 219 (0) 16.67 (0) 92.4 92.5 73.4 74.1
14 29.75 (0) 219 (0) 16.67 (0) 91.2 92.5 74.4 74.1
15 29.75 (0) 219 (0) 16.67 (0) 94.0 92.5 74.4 74.1

Uncoded and coded levels of variables Color removal (%) (Y1) COD removal (%) (Y2)
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Table 6.27: Test for response function Y1 (color removal in percentage). Table 2 of Zhang et al 
(2012). 
 

 
Using the terms in Table 6.27, the authors suggested the following prediction equation (equation 
6 in the paper) for Y1: 

𝑌𝑌1 = 91.65 + 5.22 𝑋𝑋2 + 2.22 𝑋𝑋3 − 2.08 𝑋𝑋12 − 3.21 𝑋𝑋22 

The R2 value for Y1 was 0.8862, and adjusted R2 value was 0.8406. The predicted R2 value was 
not given. It should be noted that the 𝑋𝑋12 term is not statistically significant at the 5% level and can 
be left out. If this term is included, then the X1 term should also be included in the model for 
hierarchy.  

Table 6.28: Test for response function Y2 (COD removal in percentage). Table 3 of Zhang et al 
(2012). 
 

 
For Y2, the suggested prediction equation was (equation 7 in the paper): 

𝑌𝑌2 = 72.75 + 8.07 𝑋𝑋1 +  5.36 𝑋𝑋2 + 4.07 𝑋𝑋3 − 8.18 𝑋𝑋12 − 4.09 𝑋𝑋22 

The R2 value for Y2 was 0.9319, and adjusted R2 value was 0.8940. The predicted R2 value was 
not given. The coefficients of this model were all statistically significant at the 5% level and the 
model is hierarchical.  

Source Sum of Squares df Mean Square F-value p-value
Model 308.53 4 77.13 19.46 0.0001
X2 218.09 1 218.09 55.02 < 0.0001
X3 39.43 1 39.43 9.95 0.0103
X1

2 16.00 1 16.00 4.04 0.0723
X2² 38.29 1 38.29 9.66 0.0111
Residual 39.64 10 3.96
Lack of Fit 35.77 8 4.47 2.31 0.3366
Pure Error 3.86 2 1.93
Cor Total 348.17 14

Source Sum of Squares df Mean Square F-value p-value
Model 1177.39 5 235.48 24.62 < 0.0001
X1 520.40 1 520.40 54.41 < 0.0001
X2 229.84 1 229.84 24.03 0.0008
X3 132.56 1 132.56 13.86 0.0048
X1² 248.77 1 248.77 26.01 0.0006
X2² 62.08 1 62.08 6.49 0.0313
Residual 86.08 9 9.56
Lack of Fit 85.40 7 12.20 35.79 0.0274
Pure Error 0.68 2 0.34
Cor Total 1259.53 14
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The assumptions of regression were checked by the authors and found to be satisfactory. The 
authors concluded that the photoelectron-Fenton process was capable of efficiently removing COD 
from landfill leachate. The results also showed that there was no interaction effect between the 
factors studied. The optimal conditions for color removal (of over 90%) and COD removal (of 
over 75%) were obtained using an overlay plot of the two response functions. One possible solution 
to achieve the above optimal condition was setting ferrous ion and hydrogen peroxide dosages at 
38.99 and 153.2 mmol L-1, respectively at a current density of 25 mA cm-2. The authors did not 
use the desirable function approach for optimization available in Design-Expert.  
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______________________________________________ 

7. RSM: CENTRAL COMPOSITE DESIGNS 

(Rotatable) 

 

10 case studies are presented in this Chapter on the use RSM based on rotatable or near-rotatable 

central composite design or CCD designs. The number of factors are mostly three or four. The 

CCD is a well-known and popular classical response surface design with up to five levels (-, -1, 

0, +1, +).  For a rotatable design, 𝛼 = √2𝑘
4

. If = ±1, the CCD becomes a face-centered design 

or FCD (Chapter 8). The CCD is made up three parts – factorial points, axial points, and center 

points. The number of design points is 2k + 2k + nc, where k is the number of factors, and nc is the 

number of center points. The advantages of CCD is that it is amendable to sequential 

experimentation unlike the Box-Behnken design presented in Chapter 6. These designs generally 

require less runs than BBD especially when the number of factors are five or more because a 

resolution V design can be used for the factorial portion of the CCD.  

 

Case Study #7.1 

Ahmad, A. L., S. Ismail, and S. Bhatia (2005): Optimization of coagulation-flocculation process 

for palm oil mill effluent using response surface methodology. Environmental Science and 

Technology, 39, pp. 2828-2834. 

This study used a three-factor near rotatable central composite design to optimize the coagulation-

flocculation process for palm oil mill effluent. The factors and levels investigated were shown in 

Table 1 of the paper and are reproduced here as Table 7.1.  The axial points for the CCD are at 

±2.0 instead of 1.68 for a rotatable design.  

Table 7.1: Experimental range and levels of the independent variables. Table 1 of Ahmad et al 

(2005). 

 

The coagulation-flocculation process and materials and methods used in the experiment were 

described in the paper.  Two responses were of interest – turbidity (NTU) and water recovery (%).  

The objective was to seek factors setting that would minimize turbidity and maximize water 

recovery.  

 

variables -2 -1 0 1 2

A, coagulant dosage (mg/L) 0 7500 15000 22500 30000

B, flucculant dosage (mg/L) 0 125 250 375 500

C, pH 2 4 6 8 10

range and levels
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The CCD design layout in coded units and the responses were shown in Tables 2 and 3 of the 

paper. These tables are combined and reproduced here as Table 7.2.  According to the authors, the 

CCD was a follow-up design after a 2-level factorial experiment with eight runs and four center 

points (runs 1-12).  The 2-level design was then augmented with an additional six center points 

and two axial points (runs 13-20) giving a total of 20 design points.  The additional eight runs were 

put in a second block. Hence, the CCD was analyzed as two blocks.  Design-Expert 6.0 was used 

for the design and analysis of the experiment.   

 

Table 7.2: CCD for the study of three experimental variables in coded units and results. Tables 2 

and 3 of Ahmad et al (2005). 

 

 

 

A full second-order quadratic model was first fitted to the log base 10 transformations of the 

turbidity data.  The ANOVA results were shown in Table 4 of the paper and are reproduced here 

as Table 7.3. Based on the ANOVA results, the authors concluded that the model was highly 

significant with high R2 and adjusted R2 values.  They suggested the following regression equation 

as the empirical model (in terms of coded factors) for turbidity (Equation 3 in the paper): 

 

Turbidity (log10) = 1.274 – 0.295A – 0.103B – 0.160C + 0.260A2 + 0.164B2 + 0.394C2 – 0.120AB  

-0.399AC – 0.146 BC 

coagulant dosage flocculant dosage pH turbidity log10 of water

run no. (A) (B) (C) (NTU) turbidity recovery (%)

1 -1 1 -1 230.35 2.3624 68.0

2 1 -1 1 92.14 1.9644 53.0

3 0 0 0 15.19 1.1816 79.8

4 -1 1 1 785.75 2.8953 52.0

5 -1 -1 1 892.40 2.9506 59.0

6 0 0 0 16.10 1.2068 74.8

7 -1 -1 -1 142.50 2.1538 74.0

8 1 1 -1 310.85 2.4926 81.0

9 0 0 0 13.91 1.1433 75.2

10 1 1 1 12.86 1.1092 68.4

11 1 -1 -1 279.15 2.4458 74.0

12 0 0 0 18.53 1.2679 77.2

13 2 0 0 32.57 1.5128 70.8

14 0 0 2 137.75 2.1391 51.0

15 0 0 0 29.53 1.4703 70.2

16 0 0 0 27.10 1.4330 74.0

17 0 -2 0 93.83 1.9723 38.0

18 0 0 -2 1409.25 3.1490 68.0

19 0 2 0 29.86 1.4751 73.6

20 -2 0 0 502.15 2.7008 92.8

factor responses
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Note that in Table 7.3, several of the terms were not statistically significant at the 5% level.  

Furthermore, there was also a significant lack of fit (p-value=0.0012).  This was not mentioned in 

the paper. A reduced quadratic model with only statistically significant terms would have produced 

a model with a higher predicted R2.  

 

Table 7.3: ANOVA for response surface quadratic model (Turbidity). Table 4 of Ahmad et al 

(2005). 

 

 
 

A full second-order quadratic model was also fitted to the water recovery data.  The ANOVA 

results were shown in Table 5 of the paper and are reproduced here as Table 7.4. Based on the 

ANOVA results, the authors also concluded that the model was highly significant with high R2 

and adjusted R2 values.  They suggested the following regression equation as the empirical model 

(in terms of coded factors) for water recovery (Equation 4 in the paper): 

 

Water recovery (%) = 74.91 – 1.288A + 5.038B – 6.162C + 1.462A2 - 4.112B2 + 4.112C2  

+ 4.425AB – 0.325AC + 0.925 BC 

 

Note that in Table 7.4, all the terms involving factor A were not statistically significant at the 5% 

level.  Furthermore, there was also a significant lack of fit (p-value =0.0051) and the predicted R2 

was negative indicating that the overall mean maybe a better predictor of the response than the 

quadratic model proposed. This was also not mentioned in the paper.  

 

source sum of squares DF mean square F value Prob > F

block 0.013 1 0.013

model 7.951 9 0.883 12.296 0.0005

A 1.396 1 1.396 19.428 0.0017

B 0.17 1 0.17 2.367 0.1583

C 0.408 1 0.408 5.678 0.0410

A
2

1.617 1 1.617 22.499 0.0011

B2 0.644 1 0.644 8.958 0.0151

C2 3.723 1 3.723 51.812 <0.0001

AB 0.116 1 0.116 1.609 0.2365

AC 1.276 1 1.276 17.753 0.0023

BC 0.17 1 0.17 2.365 0.1585

residual 0.65 9 0.072

lack of fit 0.64 5 0.127 47.573 0.0012

pure error 0.01 4 0.003

cor total 8.61 19

SD 0.27 R2 0.9248

mean 1.95 adj R
2

0.8496

CV 13.75 pred R
2

0.5248

PRESS 4.09 adeq precision 10.47
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Table 7.4: ANOVA for response surface quadratic model (Water recovery %). Table 5 of Ahmad 

et al (2005). 

 

 
 

To obtain the factor settings that would minimize turbidity and maximize water recovery, the 

authors used an overlay plot by superimposing the contours for the various response surfaces.  The 

optimal factors settings were as follows: coagulant dosage = 15,000 mg/L, flocculent dosage = 

300 mg/L, pH = 6.0.  The predicted responses were turbidity = 19 NTU and water recovery = 76%. 

The authors verified the results by performing three experiments at the optimal settings and 

obtained average values of 20 NTU for turbidity and 78% for water recovery.  The authors could 

have used the straightforward desirability function approach for optimization available in Design-

Expert.  

 

 

 

 

 

source sum of squares DF mean square F value Prob > F

block 27.648 1 27.648

model 2311.01 9 256.779 3.504 0.0379

A 26.522 1 26.522 0.362 0.5623

B 406.022 1 406.022 5.540 0.0430

C 607.622 1 607.622 8.291 0.0182

A
2

51.334 1 51.334 0.700 0.4243

B2 609.034 1 609.034 8.310 0.0181

C2 405.904 1 405.904 5.538 0.0431

AB 156.645 1 156.645 2.137 0.1778

AC 0.845 1 0.845 0.012 0.9168

BC 6.845 1 6.845 0.098 0.7669

residual 659.59 9 73.288

lack of fit 636.66 5 127.332 22.212 0.0051

pure error 22.93 4 5.732

cor total 2998.25 19

SD 8.56 R2 0.7780

mean 68.74 adj R
2

0.5559

CV 12.45 pred R
2

-1.3271

PRESS 6913.00 adeq precision 6.0877
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Case Study #7.2 

Bajpai, S., S. K. Gupta, Apurba Dey, M. K. Jha, Vidushi Bajpai, Saurabh Joshi, and Arvind Gupta 

(2012): Application of central composite design approach for removal of chromium (VI) from 

aqueous solution using weakly anionic resin: Modeling, optimization, and study of interactive 

variables. Journal of Hazardous Materials, 227-228, pp. 436-444. 

This study applied response surface methodology using a rotatable central composite design to 

model and optimize the process parameters for the removal of Cr(VI) from aqueous streams using 

weakly anionic resin Amberlite IRA 96.  Four process parameters were investigated – time of 

contact, initial solution pH, initial Cr(VI) concentration, and resin dose on Cr adsorption. The 

variables and levels used were shown in Table 1 of the paper and are reproduced here as Table 7.5. 

Table 7.5 has been modified slightly to be consistent with the order of variables used in the 

experimental design.  

Table 7.5: Independent variables and levels. Modified Table 1 of Bajpai et al (2012). 
 

 

The response variable was the percentage removal of Cr(VI). Design-Expert (version unknown) 

was used for the design and analysis of the experiment.  A rotatable CCD with α = ±2 and six 

center points giving a total of 30 runs was used. The experimental design and results were shown 

in Table 2 of the paper and are reproduced here as Table 7.6. The experimental procedures and 

materials used were described in the paper. 

The standard second-order response surface model with linear, two-factor interactions, and 

quadratic terms was fitted to the Cr(VI) recovery data. The ANOVA results for the full quadratic 

model were shown in Table 3 of the paper and are reproduced here as Table 7.7.   

A quadratic regression model with all terms in actual values was selected as the prediction equation 

(Equation 8) in the paper and is given by: 

Removal% = 44.21271 + 0.71240𝑋1 − 7.84705𝑋2 − 0.21915𝑋3 + 15.88276𝑋4
− 0.0130𝑋1𝑋2 + 1.17955𝑋1𝑋3 − 0.022634𝑋1𝑋4 + 0.00575924𝑋2𝑋3
− 1.09992𝑋2𝑋4 − 0.011127𝑋3𝑋4 − 0.00556975𝑋1

2 + 0.39154𝑋2
2

+ 0.000236541𝑋3
4 − 0.22808𝑋4

2 

The above equation was incorrectly stated in the paper as in coded values.  As can be seen in Table 

7.7, nine out of 14 of the regression coefficients were actually not statistically significant at the 

5% level.  Furthermore, the lack of fit was statistically significant.  This was not addressed in the 

paper.  The predicted values from the regression model were also shown in Table 7.6.  

Variables

- -1 0 1 +

Treatment time (min) 0 30 60 90 120

pH 1 2.5 4 5.5 7

Cr(VI) concentration (mg/L) 50 162.5 275 387.5 500

Adsorbent dose (g/L) 0.2 2.65 5.1 7.55 10

Levels
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Table 7.6: Independent variables and response of adsorption. Table 2 of Bajpai et al (2012). 
 

 

 

The R2 for the regression model was 0.88. No other goodness-of-fit statistics were given.  

Reanalysis of the data in Table 7.6 using Design-Expert 12 did not produce identical results to 

those of the paper. Only the corrected total sum squares was identical. However, the ANOVA 

results obtained using Design-Expert 12 were similar in magnitude to those shown in Table 7.7. 

Significant improvement in the predicted R2 can be obtained if a reduced quadratic model with 

only statistically significant terms are used. However, the model still suffers from a significant 

lack of fit which needs to be addressed. 

 

 

Run Time (min) pH Conc'n (mg/L) Doses (g/L)

X1 X2 X3 X4 Actual Predicted

1 60 4 500 5.1 44.98 52.45

2 90 5.5 387.5 2.65 36.97 37.10

3 60 1 275 5.1 91.56 84.26

4 90 2.5 162.5 2.65 49.46 52.18

5 90 2.5 387.5 7.55 77.98 78.65

6 90 5.5 162.5 2.65 34.76 32.76

7 60 4 275 5.1 51.98 52.18

8 120 4 275 5.1 52.86 44.18

9 60 4 275 5.1 48.64 52.18

10 60 4 275 10 61.67 69.92

11 60 4 275 5.1 49.99 56.35

12 60 4 275 5.1 46.96 52.18

13 90 2.5 387.5 2.65 55.78 56.80

14 60 4 275 5.1 52.56 52.18

15 90 5.5 387.5 7.55 42.78 42.77

16 30 2.5 162.5 7.55 95.98 88.52

17 90 5.5 162.5 7.55 58.86 50.70

18 60 4 275 0.2 20.34 23.48

19 30 5.5 387.5 7.55 40.64 27.25

20 60 7 275 5.1 8.45 17.14

21 30 5.5 387.5 2.65 30.86 14.92

22 30 2.5 162.5 2.65 51.56 47.76

23 60 4 50 5.1 78.56 75.85

24 30 5.5 162.5 2.65 30.55 26.50

25 60 4 275 5.1 56.86 52.18

26 30 2.5 387.5 2.65 32.98 33.53

27 90 2.5 162.5 7.55 97.45 105.35

28 30 5.5 162.5 7.55 54.56 49.15

29 0 4 275 5.1 0 3.07

30 30 2.5 387.5 7.55 62.87 60.78

%removal of Cr(VI)
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Table 7.7:  ANOVA table for response surface quadratic model. Table 3 of Bajpai et al (2012). 

 

 
 

The authors then used quadratic programming to determine the optimal conditions to maximize 

Cr(VI) removal using the developed regression model. The optimal conditions obtained using 

Amberlite IRA 96 resin in a batch process at temperature 30 °C were: contact time of 62.56 min, 

initial solution pH of 1.96, initial Cr(VI) concentration of 145.4 mg/L, and adsorbent dose of 8.51 

g/L.  With these conditions, the model predicted a 94.90% removal of Cr(VI). To validate the 

conditions obtained, an experiment with the optimal settings was conducted. The results were 

shown in Table 4 of the paper and are reproduced here as Table 7.8.  

Table 7.8:  Model validation. Table 4 of Bajpai et al (2012). 

 

 

More than one validation experiment would provide more confidence in the developed model. The 

authors could have used the desirability function approach for optimization that is available in 

Design-Expert instead of using quadratic programming.  

 

Source Sum of squares df Mean square F value p value > F

Model 13,080.82 14 934.34 7.70 0.0002

X1 - time 862.69 1 862.69 7.11 0.0176

X2 - pH 4715.57 1 4715.57 38.88 0.0001

X3 - conc. 942.77 1 942.77 7.77 0.0138

X4 - dose 3197.51 1 3197.51 26.36 0.0001

X1X2 5.38 1 5.38 0.04 0.0836

X1X3 284.21 1 284.21 2.34 0.1467

X1X4 41.89 1 41.89 0.35 0.5655

X2X3 18.84 1 18.84 0.16 0.6991

X2X4 257.11 1 257.11 2.12 0.1660

X3X4 170.65 1 170.65 1.41 0.2540

X1
2

696.84 1 696.84 5.74 0.0300

X2
2 21.52 1 21.52 0.18 0.6796

X3
2 311.07 1 311.07 2.56 0.1301

X4
2

51.98 1 51.98 0.43 0.5226

Residual 1819.49 15 121.3

Lack of fit 1757.53 10 175.75 14.18 0.0046

Pure error 61.96 5 12.39

Cor total 14,900.32 29

pH Adsorbent Time Initial Cr(VI)

dose (g/L) (min) conc'n (mg/L) predicted actual 

1.96 8.51 62.5 145.4 94.99 93.26

% removal
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Case Study #7.3 

Eren, I. and Figen Kaymak-Erktekin (2007): Optimization of osmotic dehydration of potato using 

response surface methodology. Journal of Food Engineering, 79, pp. 344-352. 

This study used response surface methodology with a rotatable central composite design to 

determine the optimum conditions to dehydrate potatoes by osmotic dehydration to maximize 

water loss and weight reduction, and minimize solid gain and water activity. Osmotic dehydration 

is gaining in popularity in food processing due to its energy efficiency and quality produced. Four 

factors were investigated – temperature, sucrose concentration, salt concentration, and processing 

time. The factors and levels used in the experiment are summarized in Table 7.9.  

Table 7.9:  Factors and levels used in potato dehydration experiment.  

 

 

The materials and methods used in the osmotic dehydration process were described in the paper. 

The responses of interest were: water loss (WL, %), weight reduction (WR, %), solid gain (SG, 

%) and water activity (aw). The definitions of the responses and how they were measured were 

given in the paper. The goal was to determine the optimal settings of the four process parameters 

(factors) to maximize WL and WR, while minimizing SG and aw.  

Design-Expert 6.01 was used in the design and analyses of the experiment, and also in subsequent 

optimization using the developed model. 

A four-factor rotatable CCD with  = ±2, and seven center points was used.  The total number of 

runs was 31 (16 factorial points, 8 axial points, and 7 center points).  The experimental matrix and 

results were shown in Table 1 of the paper and are reproduced here as Table 7.10.  

A full standard second-order quadratic response surface model was then fitted to each of the 

responses. The full ANOVA table and associated regression coefficients were summarized in 

Table 2 of the paper and are reproduced here as Table 7.11 (typographical errors in the original 

table have been corrected in Table 7.11). 

The full quadratic model provided a reasonably good fit to each of the responses and the lack of 

fit tests were all statistically insignificant at the 5% level.  Reanalyses of the data in Table 7.10 

gave similar results to those reported in Table 7.11 but not identical. Higher predicted R2 values 

could be obtained by using reduced quadratic models with only statistically significant terms.  

 

 

 

Variable Name Unit -2 -1 0 1 2

x1 Temperature °C 20 30 40 50 60

x2 Sucrose concentration % 40 45 50 55 60

x3 Salt concentration % 0 3.75 7.5 11.25 15

x4 Time min 29.5 142 254.5 367 479.5

Levels
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Table 7.10: Central composite rotatable design with experimental values of response variables. 

Table 1 of Eren et al (2007). 

 

 
 

The authors then used the desirability function approach available in Design-Expert to determine 

the optimum conditions for osmotic dehydration of potatoes. The goals were to maximize water 

loss and weight reduction and minimize solid gain and water activity.  The optimal conditions 

were found to be: temperature of 22 °C, sucrose concentration of 54.5%, salt concentration of 14%, 

and time of 329 min, obtaining a water loss of 59.1 (g/100g fresh sample), weight reduction of 

52.9 (g/100g fresh sample), solid gain of 6.0 (g/100g fresh sample), and water activity of 0.785. 

No further experiments were conducted to validate the optimum conditions obtained.  

Run # Temp Sucrose Salt Time WL SG WR aw

 (°C) conc. (%) Conc. (%) (min) (%) (%) (%)

1 30 (-1) 45 3.75 142 40 3.6 36.4 0.954

2 50 (+1) 45 3.75 142 46.9 4.5 42.5 0.931

3 30 (-1) 55 3.75 142 46.2 4 42.2 0.942

4 50 (+1) 55 3.75 142 54.6 5.5 49 0.919

5 30 (-1) 45 11.25 142 48.6 5 43.5 0.878

6 50 (+1) 45 11.25 142 56 6.6 49.4 0.855

7 30 (-1) 55 11.25 142 54.2 5.9 48.3 0.861

8 50 (+1) 55 11.25 142 60.5 7.1 53.4 0.828

9 30 (-1) 45 3.75 367 48.9 5.8 43.1 0.929

10 50 (+1) 45 3.75 367 52 7.4 44.6 0.919

11 30 (-1) 55 3.75 367 55.9 6.5 49.5 0.911

12 50 (+1) 55 3.75 367 60.5 8 52.5 0.896

13 30 (-1) 45 11.25 367 56.9 7 49.8 0.849

14 50 (+1) 45 11.25 367 58.6 8.2 50.4 0.838

15 30 (-1) 55 11.25 367 61.4 7.4 54 0.816

16 50 (+1) 55 11.25 367 64.8 8.6 56.2 0.798

17 20 (-2) 50 7.5 254.5 54.6 4.3 50.3 0.897

18  60 (+2) 50 7.5 254.5 62.2 7.6 54.6 0.864

19 40 (0) 40 7.5 254.5 50.3 7 43.3 0.891

20 40 (0) 60 7.5 254.5 62.8 8.1 54.7 0.846

21 40 (0) 50 0 254.5 43.4 5.1 38.3 0.957

22 40 (0) 50 15 254.5 61.9 6.7 55.1 0.778

23 40 (0) 50 7.5 29.5 40.9 3.7 37.2 0.941

24 40 (0) 50 7.5 479.5 60.6 9.3 51.3 0.871

25 40 (0) 50 7.5 254.5 60.5 7 53.4 0.878

26 40 (0) 50 7.5 254.5 60.5 6.5 53.9 0.869

27 40 (0) 50 7.5 254.5 61.5 7.1 54.4 0.874

28 40 (0) 50 7.5 254.5 60.6 6.8 53.7 0.876

29 40 (0) 50 7.5 254.5 61.9 6.4 55.5 0.878

30 40 (0) 50 7.5 254.5 59.1 6.4 52.8 0.88

31 40 (0) 50 7.5 254.5 63.7 6.8 56.9 0.881
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Table 7.11: ANOVA table showing the variables as linear, quadratic and interaction terms on each 

response variable and coefficients for the prediction models. Corrected Table 2 of Eren et al 

(2007). 

 

 
 

 

Case Study #7.4 

Lakshminarayanan, A. K., V. E. Annamalai, and K. Elangovan (2015): Identification of optimum 

friction stir spot welding process parameters controlling the properties of low carbon 

automotive steel joints. Journal of Materials Research and Technology, 4 (3), pp. 262-272. 

This study applied response surface methodology using a rotatable central composite design to 

optimize the process parameters for friction stir spot welding of low carbon automotive steel joints. 

The goal was to develop a model for predicting the lap shear tensile strength of the welded steel 

joints and to determine the optimum settings of the process parameters to maximize strength. Three 

process parameters – rotational speed, plunge depth, and dwell time were investigated. The 

parameters and levels used in the experiment were shown in Table 3 of the paper and are 

reproduced here as Table 7.12. The details of the experimental work and materials used were 

described in the paper. The response of interest was the tensile shear failure load (TSFL) in kN.  

 

 

Source DF

Coefficient Sum of p-value Coefficient Sum of p-value Coefficient Sum of p-value Coefficient Sum of p-value

squares squares squares squares

Intercept/Model 14 61.110 1431.26 <0.0001 6.729 59.90 <0.0001 54.380 1012.82 <0.0001 0.877 0.058 <0.0001

x1 1 2.373 135.14 <0.0001 0.723 12.54 <0.0001 1.650 65.34 <0.0001 -0.009 0.0021 <0.0001

x2 1 3.139 236.45 <0.0001 0.296 2.10 0.0008 2.843 193.95 <0.0001 -0.011 0.0031 <0.0001

x3 1 3.870 359.35 <0.0001 0.578 8.01 <0.0001 3.292 260.07 <0.0001 -0.043 0.045 <0.0001

x4 1 3.811 348.63 <0.0001 1.160 32.30 <0.0001 2.651 168.70 <0.0001 -0.015 0.0052 <0.0001

x1
2 1 -0.753 16.22 0.0205 -0.220 1.38 0.0041 -0.533 8.14 0.0792 0.001 5E-05 0.1108

x2
2 1 -1.211 41.97 0.0008 0.187 1.00 0.0117 -1.398 55.91 0.0001 -0.002 8E-05 0.0518

x3
2 1 -2.190 137.21 <0.0001 -0.227 1.47 0.0032 -1.964 110.26 <0.0001 -0.002 0.0001 0.0280

x4
2 1 -2.666 203.26 <0.0001 -0.078 0.17 0.2518 -2.588 191.54 <0.0001 0.008 0.0017 <0.0001

x1x2 1 0.215 0.74 0.5898 0.003 0.00 0.9765 0.213 0.72 0.5796 -0.001 3E-05 0.2123

x1x3 1 -0.245 0.96 0.5409 -0.032 0.02 0.7189 -0.212 0.72 0.5800 -0.001 1E-05 0.4206

x1x4 1 -1.005 16.16 0.0207 0.028 0.01 0.7505 -1.033 17.09 0.0143 0.003 0.0001 0.0120

x2x3 1 -0.520 4.39 0.1996 -0.034 0.02 0.7065 -0.490 3.84 0.2111 -0.003 0.0002 0.0073

x2x4 1 0.140 0.32 0.7241 -0.049 0.04 0.5812 0.190 0.58 0.6204 -0.003 0.0001 0.0153

x3x4 1 -0.440 3.07 0.2796 -0.202 0.65 0.0349 -0.236 0.89 0.5393 -0.002 7E-05 0.0955

Residual 16 39.23 1.97 36.24 0.0003

Lack of fit 10 26.75 0.3944 1.49 0.2295 24.69 0.3952 0.0002 0.4624

Pure error 6 12.48 0.48 11.54 0.0001

Total 30 1470.49 61.87 1049.06 0.058

R2 0.9733 0.9682 0.9655 0.995

Adj-R2 0.9500 0.9403 0.9352 0.9907

Pred-R2 0.8837 0.8507 0.8494 0.9791

PRESS 171.07 9.23 157.95 0.0012

CV 2.80 5.42 3.05 0.48

Water Loss (WL) Solid gain (SG) Weight reduction (WR) Water activity (aw)
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7.12:  Feasible limits of the process parameters and their levels. Table 3 of Lakshminarayanan et 

al (2015). 
 

 

Design-Expert Version 8 was used for the design and analysis of the experiment and subsequent 

optimization process to determine the best combination of parameters to maximize TSFL. A three-

factor rotatable CCD with  = ±1.682 and six center points) was used. The total number of runs 

was 20 (8 factorial points, 6 axial points, and 6 center points.  The design matrix and experimental 

results were shown in Table 4 of the paper and are reproduced here as Table 7.13.  

Table 7.13: Design matrix and experimental results. Table 4 of Lakshminarayanan et al (2015). 

 

A full standard second-order quadratic response surface model was then fitted to each of the 

responses. The ANOVA results were shown in Table 5 of the paper and are reproduced here as 

Table 7.14. All terms of the full quadratic model were all statistically significant at the 5% level, 

and the lack of fit term was not statistically significant. No goodness of fit statistics were reported 

in the paper.  

 

Parameters Notation Units

-1.682 -1 0 1 1.682

Rotational speed N rpm 1200 1281 1400 1519 1600

Plunge depth P mm 0 0.04 0.1 0.16 0.2

Dwell time D s 5 9 15 21 25

Levels

Exp. No. TSFL (kN)

N P D N P D

1 -1 -1 -1 1281 0.04 9 5.60

2 1 -1 -1 1519 0.04 9 9.50

3 -1 1 -1 1281 0.16 9 12.70

4 1 1 -1 1519 0.16 9 10.40

5 -1 -1 1 1281 0.04 21 10.30

6 1 -1 1 1519 0.04 21 15.50

7 -1 1 1 1281 0.16 21 12.10

8 1 1 1 1519 0.16 21 11.40

9 -1.682 0 0 1200 0.1 15 10.40

10 1.682 0 0 1600 0.1 15 12.80

11 0 -1.682 0 1400 0 15 9.90

12 0 1.682 0 1400 0.2 15 12.10

13 0 0 -1.682 1400 0.1 5 8.50

14 0 0 1.682 1400 0.1 25 13.00

15 0 0 0 1400 0.1 15 13.60

16 0 0 0 1400 0.1 15 13.40

17 0 0 0 1400 0.1 15 13.30

18 0 0 0 1400 0.1 15 13.50

19 0 0 0 1400 0.1 15 13.10

20 0 0 0 1400 0.1 15 13.40

Coded value Original value
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Table 7.14: ANOVA for tensile shear failure load. Table 5 of Lakshminarayanan et al (2015). 
 

 

The full second-order quadratic regression model (in coded values) was used as the prediction 

model (Equation 4): 

 

Tensile shear failure load (TSFL, kN) = 13.38 + 0.74N + 0.69P + 1.37D – 1.51NP + 0.36ND  

     – 1.29PD – 0.64N2 – 0.85P2 – 0.94D2 

 

Reanalyses of the data in Table 7.13 using Design-Expert 12 gave very similar results to those 

reported in Table 7.14 but not identical. The R2, adjusted R2, and predicted R2 obtained are 0.9981, 

0.9964, and 0.9950, respectively. 

 

The authors then used the prediction model to obtain the optimal factor settings using the 

desirability function approach available in Design-Expert. Three possible solutions were given by 

the software based on the desirability values. These were shown in Table 7 of the paper and 

reproduced here as Table 7.15.  

 

Table 7.15: Confirmation experiments. Table 7 of Lakshminarayanan et al (2015). 

 

 

Source Sum of Squares df Mean Square F-value p-value

Model 96.56494 9 10.72944 557.2028 < 0.0001

N 7.52330 1 7.52330 390.7012 < 0.0001

P 6.46993 1 6.46993 335.9976 < 0.0001

D 25.51808 1 25.51808 1325.209 < 0.0001

NP 18.30125 1 18.30125 950.4233 < 0.0001

ND 1.05125 1 1.05125 54.59367 < 0.0001

PD 13.26125 1 13.26125 688.6852 < 0.0001

N² 5.88990 1 5.88990 305.8754 < 0.0001

P² 10.44720 1 10.44720 542.5454 < 0.0001

D² 12.72887 1 12.72887 661.0375 < 0.0001

Residual 0.19256 10 0.019256

Lack of Fit 0.04426 5 0.008845 0.29815 0.8949

Pure Error 0.14833 5 0.029667

Cor Total 96.75750 19

Exp. No. N (rpm) P (mm) D (s) Tensile shear failure load (kN)

1 1530 0.05 21.3 Actual 14.97

(1.09) (-0.97) (1.07) Predicted 15.72

Error % 4.96

2 1595 0.05 22.8 Actual 15.5

(1.64) (-0.95) (1.32) Predicted 16.38

Error % 5.37

3 1591 0.05 19.64 Actual 15.73

(1.61) (-0.96) (0.78) Predicted 14.98

Error % 4.77

Values given in braclets are the corresponding coded values.

Error% = (measured value - predicted value)/predicted value. 
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Three confirmation experiments were conducted using the optimal combinations shown in the 

table to validate the model. The predicted and observed values are also shown in Table 7.15.  The 

percentage errors were around 5%.   

 

The authors concluded that a maximum tensile shear fracture load 15.67 kN could be attained 

using a tool rotation speed of 1157 rpm, plunge depth of 0.05 mm, and dwell time of 22 s. It is not 

clear how these values were obtained as they were not part of the optimal combinations shown in 

Table 7.15. 

 

Case Study #7.5 

Mu, Y., Xian-Jun Zheng, and Han-Qing Yu (2009): Determining optimum conditions for hydrogen 

production from glucose by an anaerobic culture using response surface methodology (RSM). 

International Journal of Hydrogen Energy, 34, pp. 7959-7963. 

This study applied response surface methodology using a rotatable central composite design to 

optimize the production of H2 from glucose by an anaerobic culture.  Three factors that influenced 

the hydrogen production process – temperature, pH, and glucose concentration were investigated. 

The factors and levels used are summarized in Table 7.16.  The experimental methods and 

materials used in the experiment were described in the paper. 

Table 7.16:  Factors and levels used in the hydrogen production experiment. 

 

 

The response of interest was the H2 yield (mol-H2/mol-glucose). The primary goal was to 

determine the optimal combinations of the three factors to maximize H2 yield.  

A three-factor rotatable CCD with  = ±1.68 and six center points was used. The total number of 

runs was 20 (8 factorial points, 6 axial points, and 6 center points.) Minitab (unknown version) 

was used for the design and analysis of the experiment. The design matrix in coded and real values, 

and H2 yield results were shown in Table 1 of the paper and are reproduced here as Table 7.17.  

A full standard second-order quadratic response surface model was fitted to the response and the 

estimated regression coefficients and associated statistics were shown in Table 2 of the paper and 

are reproduced here as Table 7.18. Six of the coefficients were not statistically significant at the 

5% level. However, the authors seem to have used the full model in the optimization phase.  

 

The summarized ANOVA table for the full model was shown in Table 3 of the paper and is 

reproduced here as Table 7.19.  The only goodness of fit statistic was the R2 value of 0.927. There 

was no mention of regression diagnostics in the paper.  

 

Factor Units

-1.68 -1 0 1 1.68

Temperature °C 27.4 32.5 40 47.5 52.6

pH 4.24 4.75 5.5 6.25 6.76

Glucose concentration g/L 5.8 7.5 10 12.5 14.2

Levels
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Table 7.17: A 20 full factorial CCD with six replicates of the centre point for H2 yield. Table 1 of 

Mu et al (2009). 

 

 

 

Table 7.18: Estimated regression coefficients and corresponding standard deviation, texp and 

significance level for H2 yield. Table 2 of Mu et al (2009). 
 

 

 

Run H2 yield

x1 x2 x3 X1 X2 X3 (mol-H2/mol-glucose)

1 1 1 1 47.5 6.25 12.5 0.75

2 1 1 -1 47.5 6.25 7.5 0.89

3 1 -1 1 47.5 4.75 12.5 0.44

4 1 -1 -1 47.5 4.75 7.5 0.79

5 -1 1 1 32.5 6.25 7.5 0.97

6 -1 1 -1 32.5 6.25 12.5 1.07

7 -1 -1 1 32.5 4.75 12.5 0.42

8 -1 -1 -1 32.5 4.75 7.5 0.47

9 1.68 0 0 52.6 5.50 10.0 0.31

10 -1.68 0 0 27.4 5.50 10.0 1.17

11 0 1.68 0 40.0 6.76 10.0 1.00

12 0 1.68 0 40.0 4.24 10.0 0.11

13 0 0 1.68 40.0 5.50 14.2 1.76

14 0 0 -1.68 40.0 5.50 5.8 1.78

15 0 0 0 40.0 5.50 10.0 1.69

16 0 0 0 40.0 5.50 10.0 1.78

17 0 0 0 40.0 5.50 10.0 1.72

18 0 0 0 40.0 5.50 10.0 1.61

19 0 0 0 40.0 5.50 10.0 1.66

20 0 0 0 40.0 5.50 10.0 1.73

xi  is the coded value of the ith test variable.

Xi  is the real value of the ith test variable.

Coded values Real values

Coefficient Value Standard texp Significance

deviation level (%)

A0 1.71 0.09 19.62 <0.01

A1 -0.11 0.06 -1.91 8.5

A2 0.22 0.06 3.88 0.3

A3 -0.03 0.06 -0.60 56.1

A11 -0.39 0.06 -6.99 <0.01

A22 -0.46 0.06 -8.16 <0.01

A33 -0.03 0.06 -0.51 62.2

A12 -0.09 0.08 -1.23 24.8

A13 -0.07 0.08 -0.90 39.2

A23 0.05 0.08 0.60 56.4

texp was obtained from the t-test which indicates the significance

of the regression coefficients.
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Table 7.19: ANOVA analysis. Table 3 of Mu et al (2009). 
 

 

Reanalysis of the data in Table 7.17 using Design-Expert 12 gave almost identical results to those 

reported in the paper. However, the lack of fit was statistically significant (p-value = 0.0015), and 

Run #10 was identified as an outlier.  The predicted R2 was also quite low (0.4667). Furthermore 

if a reduced model with only statistically significant terms was used, the predicted R2 would have 

increased by over 20%.  

It is not clear exactly how the authors obtained the optimum conditions of a temperature of 38.8 

°C, pH of 5.7, and glucose concentration of 9.7 g/L giving a maximum H2 yield of 1.75 mol-

H2/mol-glucose. No additional experiments were conducted to confirm the model and optimum 

conditions obtained.  

 

Case Study #7.6 

Prasad, K. N., Fouad Abdulrahman Hassan, Bao Yang, Kin Weng Kong, Ramakrishnan 

Nagasundara Ramanan, Azrina Azlan, and Amin Ismail (2011): Response surface optimization 

for the extraction of phenolic compounds and antioxidant capacities of underutilised Mangifera 

pajang Kosterm peels. Food Chemistry, 1238, pp. 1121-1127. 

This study used response surface methodology with a rotatable central composite design to 

optimize the conditions for the maximum recovery of total phenolics content (TPC) and 

antioxidant capacities (AC) of Mangifera pajang peels (MPP). Mangifera pajang is an 

underutilized fruit from East Malaysia, and is commonly referred to as brown mango or 

bambangan in the Malay language. Three factors – ethanol concentration, extraction temperature, 

and liquid-to-solid ratio were investigated. The factors and levels used were shown in Table 1 of 

the paper and are reproduced here as Table 7.20.  

The primary objective of the study was to maximize the extraction of total phenolic content (TPC) 

and the antioxidant capacity (AC) from the Mangifera pajang peels (MPP).  The materials and 

methods used were described in the paper.  

 

 

Source Degree of Sum of Mean F- P-

freedom square square value value

Regression 9 5.8025 0.6447 14.18 0

Residual 10 0.4547 0.0455

Total 19 6.2573

R
2
 = 0.927

The Fisher variance ratio (F-value) is the ratio of the mean square

due to regression, divided by the mean square due to residual.
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Table 7.20:  Independent variables and their coded and actual values used for optimization. Table 

1 of Prasad et al (2011). 

 

 

Design-Expert 6.0 software was used for the experimental design and statistical analysis of the 

responses.  A three-factor rotatable CCD with  = ±1.68 and six center points was used. The total 

number of experimental runs was 20 consisting of eight factorial, six axial, and six center points. 

The experimental design and results were shown in Table 2A of the paper and are reproduced here 

as Table 7.21. 

 

Table 7.21: Three-factor central composite design used for RSM with experimental and predicted 

values for the independent variables. Table 2A of Prasad et al (2011). 

 

 

Note that in Table 7.21, the first column heading should have been “Run #” as the order of runs 

shown was not quite in standard order.  

A full standard second-order quadratic response surface model was fitted to the responses but no 

ANOVA results were shown in the paper. However, the estimated regression coefficients of the 

polynomial models and some associated statistics were shown in Table 2B of the paper and are 

reproduced here as Table 7.22. The predicted values of the two responses using the equations 

shown in Table 7.22 were also shown in Table 7.21.  

 

Independent variable Units Symbol

-1 0 1 Axial (-) Axial (+)

Ethanol concentration % X1 32 50 68 20 80

Temperature °C X2 37 48 58 30 65

Liquid/solid ratio mL/g X3 201 31.3 42.4 12.5 50

Coded levels

Standard order Factor 1 (X1) Factor 2 (X2) Factor 3 (X3)

Ethanol concentration (%) Temperature (°C) Liquid/soild ratio (mL/g)

Experimental Predicted Experimental Predicted

1 -1 -1 -1 6.39 6.04 0.165 0.166

2 1 -1 -1 7.19 7.36 0.186 0.188

3 -1 1 -1 6.41 6.51 0.135 0.135

4 1 1 -1 12.30 b 0.195 b

5 -1 -1 1 8.49 8.56 0.187 0.187

6 1 -1 1 10.20 9.88 0.183 0.183

7 -1 1 1 10.70 10.6 0.167 0.166

8 1 1 1 14.20 14.4 0.201 0.2

9a 0 0 0 13.70 13.5 0.203 0.203

10a 0 0 0 13.20 13.5 0.201 0.203

11a 0 0 0 13.40 13.5 0.206 0.203

12a 0 0 0 13.50 13.5 0.201 0.203

13 -1.68 0 0 5.97 6.11 0.142 0.143

14 1.68 0 0 10.40 10.4 0.191 0.19

15 0 -1.68 0 6.84 7.05 0.197 0.195

16 0 1.68 0 11.30 11.2 0.181 0.183

17 0 0 -1.68 6.01 6.02 0.166 0.165

18 0 0 1.68 11.50 11.6 0.185 0.187

19a 0 0 0 12.90 12.8 0.204 0.202

20a 0 0 0 13.00 12.8 0.201 0.202

a - Centre point

b - Outlier.

Response 1 (Y1)

TPC (mg GAE/g)

Response 2 (Y2)

AC (absorbance in nm)



127 
 

In Table 7.21, run #4 was identified as an outlier and no predicted values were given. Upon a closer 

examination of the predicted values, all center point values should have been identical, but this 

was not the case in Table 7.21.   

 

Reanalysis of the data in Table 7.21 using Design-Expert 12 gave almost identical results to those 

reported for the second response AC (Y2) except that the lack of fit “p-value” was 0.3266 instead 

of the reported 0.4764.  All regression terms were statistically significant at the 5% level. However, 

for the response TPC (Y1), the regression coefficients reported seemed to be off by several orders 

of magnitude and the lack of fit was statistically significant at the 5% level (p-value = 0.011) and 

not 0.1870 as reported. Furthermore, the interaction term X2X3 was also not statistically significant 

at the 5% level and should not have beeen in the model.  Run #4 would not be an outlier if a 

reduced quadratic model with only statistically significant terms were used. Hence, the results 

reported in Table 7.22 were mostly incorrect likely because of typographical errors, especially for 

the magnitudes of the regression coefficients for TPC. 

 

Table 7.22: Polynomial equation and statistical parameters calculated after implementation of 2nd 

full factorial central composite experimental design. Corrected Table 2B of Prasad et al (2011). 

 

Column 1 of Table 2B was incorrectly labelled as “Regression coefficient”. 

 

 

The authors used a combination of graphical and numerical optimization methods to determine the 

optimal levels of the independent variables to maximize TPC and AC. For the response TPC, the 

optimum values were ethanol concentration of 68%, temperature of 55 °C, and liquid/solid ratio 

of 32.7 mL/g. For the response AC, the optimum values were ethanol concentration of 68%, 

temperature of 56 °C, and liquid/solid ratio of 31.8 mL/g. The predicted responses with these 

settings were 14.6 mg GAE/g and 0.2065, respectively.  

The response surface models were verified by conducting additional experiments at the optimum 

values of the independent variables and the TPC and AC obtained experimentally were 14.6 ± 

0.0026 mg GAE/g and 0.2035 ± 0, respectively.  

No reasons were given as to why the optimization was not set to maximize both TPC and AC 

simultaneously instead of individually, as was done in this study.  

 

 

 

 

Response 2nd order polynomial equation R2 R2 (adjusted) Regression (p value) Lack of fit

TPC (Y1) 13158.69 + 1263.38X1 + 1235.93X2 + 1657.63X3 - 0.9969 0.9936 0.0001 0.1870

1615.12X1
2 - 1298.73X2

2 - 1409.43X3
2 + 605.41X1X2 + 397.40X2X3

AC (Y2) 0.20 + 0.014X1 - 0.00369X2 + 0.00651X3 - 0.012X1
2 - 0.9953 0.9900 0.0001 0.4764

0.00441X2
2 - 0.00922X3

2 - 0.00937X1X2 - 0.00626X1X3 + 0.00251X2X3
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Case Study #7.7 

Rastegar, S. O., S. M. Mousavi, S. A. Shojaosadati, and S. Sheibani (2011): Optimization of 

petroleum refinery effluent treatment in a UASB reactor using response surface methodology. 

Journal of Hazardous Materials, 197, pp. 26-32. 

This study applied response surface methodology using a rotatable central composite design to 

optimize the treatment of petroleum effluent in a laboratory scale upflow anaerobic sludge blanket 

(UASB) bioreactor. The UASB bioreactor is a popular wastewater treatment used around the world 

for several decades.  The primary goal of this study was to investigate the phenomenon of removal 

of petroleum refinery effluent in an UASB bioreactor. The schematic diagram of the UASB 

bioreactor was given in the paper and the independent variables that were adjustable on the 

bioreactor were the hydraulic retention time (HRT), upflow velocity (Vup), and the influent 

chemical oxygen demand (COD).  The experimental ranges and levels of the three variables were 

shown in Table 2 of the paper and are reproduced here with corrections as Table 7.23.  

Table 7.23: Experimental range and levels of independent test variables. Corrected Table 2 of 

Rastegar et al (2011). 
 

 

In Table 7.23, the variables are labelled to match the layout of the experimental design shown in 

Table 3 of the paper. Hence, HRT is relabelled as A instead of B, influent COD is relabelled as C 

instead of A, and Vup is relabelled as B instead of C.  

Two responses were of interest – COD removal (%) and the biogas production rate (L biogas/L 

feed d).  Design-Expert 7.0 software was used for experimental design and statistical analysis. A 

three-factor rotatable CCD with  = ±1.68 and six center points was used. The total number of 

experimental runs was 20 consisting of eight factorial, six axial, and six center points. The 

experimental design and results were shown in Table 3 of the paper and are reproduced here as 

Table 7.24. 

A reduced quadratic response surface model was fitted to the COD removal data and a reduced 

cubic model was fitted to the biogas rate data.  The partial ANOVA results for the two responses 

were shown in Table 4 of the paper and are reproduced here as Table 7.25. Only the R2 and adjusted 

R2 values were shown.   

For COD removal (%), the regression model was given as (Equation 2 in the paper): 

 

COD removal (%) = 68.06 + 6.5A + 3.29B – 2.65C – 0.63AB + 0.87AC – 0.16A2 

 

Note that from Table 7.25, the terms AB, AC, and A2 were not statistically significant at the 5% 

level. Hence a linear model with only A, B, and C would be more correct.  

 

Variable Low axial (-) Low factorial (-1) Center point (0) High factorial (+1) High axial (+)

HRT (h): A 10 12 17.5 22 25

Vup (m/h): B 0.1 0.18 0.3 0.42 0.5

Influent COD (mg/L): C 500 642 850 1060 1200
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Table 7.24: Experimental plan and results. Table 3 of Rastegar et al (2011). 

 

 

 

For biogas production rate, the regression model was given as (Equation 3 in the paper): 

 

Biogas production rate (L biogas/L feed d) = 0.14 + 0.08A + 0.10B + 0.14C – 0.027AC - 0.02BC  

      + 0.062A2+ 0.065C2 + 0.035B2 – 0.10A2B – 0.1AB2 

 

Note that from Table 7.25, the terms AC and BC were not statistically significant at the 5% level. 

Also, AB should be included for hierarchy.  

 

Reanalyses of the data using Design-Expert 12 showed that both suggested models had statistically 

significant lack of fit which was not reported. Furthermore, for COD removal, if only linear terms 

were used, the predicted R2 would increase from 0.858 to 0.918.  

For biogas production, the reported model actually had a predicted R2 of -0.0198. A negative 

predicted R2 indicates that the model is no better than using the overall mean value. In addition, 

some assumptions of regression were violated. The residuals were not normally distributed and 

they were not homoscedastic. A logarithmic transformation of the response would provide a much 

better fit and would not violate any regression assumptions. However, the lack of fit would still be 

statistically significant.  

 

 

Run HRT (h) Vup (m/h) Influent COD (mg/L) COD removal (%) Biogas rate (L biogas/L feed d)

1 22 0.42 642 78 0.18

2 22 0.18 642 72 0.14

3 17.5 0.3 851 68 0.15

4 17.5 0.1 851 61 0.1

5 17.5 0.5 851 74 0.44

6 13 0.42 642 68 0.17

7 10.0 0.3 851 55 0.21

8 22 0.42 1060 73 0.38

9 25 0.3 851 81 0.48

10 17.5 0.3 851 67 0.14

11 13 0.18 1060 54 0.52

12 17.5 0.3 851 69 0.14

13 17.5 0.3 851 68 0.14

14 17.5 0.3 1200 64 0.64

15 17.5 0.3 851 69 0.13

16 22 0.18 1060 70 0.33

17 13 0.18 642 63 0.13

18 17.5 0.3 500 73 0.07

19 17.5 0.3 851 69 0.13

20 13 0.42 1060 63 0.39
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Table 7.25: ANOVA for response surface models applied. Table 4 of Rastegar et al (2011). 

 

 

 

In the process optimization phase, the authors used graphical optimization to obtain the optimal 

variable settings for a COD removal of 75% and biogas production rate of 0.20 L biogas/L feed d. 

Reasons were given in the paper as to why these values for the responses were chosen. Two 

experimental combinations were used to validate the models.  The results of the validation 

experiments were shown in Table 5 of the paper and are reproduced here as Table 7.26.  

Table 7.26: Optimum condition verification and additional experiments. Table 5 of Rastegar et al 

(2011). 

 

 

The authors could have used the desirability function approach available in Design-Expert to 

obtain the optimal combinations.  Many other possible solutions are available to achieve the same 

objective.  

 

 

Response Model

Source Sum of square DF Mean square F value Prob > F

COD removal (%) Reduced quadratic Model 829.05 6 138.18 60.08 < 0.0001

model A 576.44 1 576.44 250.66 < 0.0001

B 147.38 1 147.38 64.09 < 0.0001

C 95.62 1 95.62 41.58 < 0.0001

A² 0.3659 1 0.37 0.1591 0.6965

AC 6.13 1 6.13 2.66 0.1267

AB 3.13 1 3.13 1.36 0.2647

Residual 29.90 13 2.30

(R
2
=0.96, R

2 
adj = 0.94)

Biogas production rate Reduced cubic Model 0.502 10 0.050 18.48 < 0.0001

(L biogas/L feed d) model A-HRT (h) 0.036 1 0.036 13.42 0.0052

B-Vup (m/h) 0.058 1 0.058 21.29 0.0013

C-Influent COD 0.281 1 0.28 103.44 < 0.0001

AC 0.006 1 0.006 2.23 0.1697

BC 0.003 1 0.003 1.18 0.3000

A² 0.055 1 0.055 20.11 0.0015

C² 0.061 1 0.061 22.48 0.0011

B² 0.018 1 0.018 6.52 0.0311

A²B 0.034 1 0.034 12.47 0.0064

AB² 0.035 1 0.035 12.89 0.0058

Residual 0.024 9 0.0025

(R2=0.95, R2 
adj = 0.90)

ANOVA

Influent COD HRT (h) Vup (m/h) COD removal (%) COD removal (%) Biogas rate (L/L feed d) Biogas rate (L/L feed d)

(mg/L) (model) (experiment) (model) (experiment)

630 21.4 0.27 75.0 76.3 0.2 0.25

620 21.4 0.27 74.9 78.3 0.2 0.24
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Case Study #7.8 

Singal, R., Prateek Seth, Dinesh Bangwal, and Savita Kaul (2012): Optimization of biodiesel 

production by response surface methodology and genetic algorithm. Journal of ASTM 

International, Vol. 9, NO. 5, pp. 1-7. 

This study applied response surface methodology using a rotatable central composite design to 

investigate the effect of three parameters – reaction temperature, catalyst concentration, and molar 

ratio of methanol to oil on biodiesel production from alkali-catalyzed transesterification of keranja 

oil.  Karanja is a non-edible plant commonly available in India. The parameters or factors and their 

levels used in the experiment are shown in Table 7.27.  

Table 7.27:  Factors and their coded and actual values used in the biodiesel experiment. 

 

 
 

The response variable was the biodiesel yield defined as the weight of biodiesel obtained per unit 

weight of pretreated oil taken. The main objective was to determine the optimal factor settings to 

maximize biodiesel yield. The materials and methods used were described in the paper.  

The experimental design was a three-factor rotatable CCD with  = ±1.68 and six center points. 

The total number of experimental runs was 20 consisting of eight factorial, six axial, and six center 

points. The experimental design and results were shown in Table 1 of the paper and are reproduced 

here as Table 7.28.  The software used for the experimental design and statistical analysis was not 

mentioned in the paper.  

A full standard second-order quadratic response surface model was fitted to the response. The 

summarized ANOVA results were shown in Table 2 of the paper and are reproduced here as Table 

7.29.  The full second-order regression model for biodiesel yield was given as (Equation 1 of the 

paper):  

Biodiesel yield, Y = 128.498 - 0.420A - 60.693B + 1.573C - 0.007A2 + 13.98 B2 - 1.17C2  

                                                  + 0.076AB + 0.217AC + 2.31BC                  (R2 = 0.9148) 

 

No other goodness of fit statistics were reported besides the R2 value of 0.9148. The p-value of 

individual regression term was also not reported in the paper.  

Reanalyses of the data using Design-Expert 12 showed that overall ANOVA results were correct 

but the terms AB, BC, A2 and B2 were not statistically significant at the 5% level.  If a reduced 

model with only statistically significant terms were used, the predicted R2 would increase from 

about 0.40 to 0.68.  

Factors Units Symbol

-1 0 1 Axial (-) Axial (+)

Temperature °C A 45 55 65 38.18 71.82

Catalyst concentration wt. % B 1.00 1.25 1.50 0.83 1.67

Molar ratio MeOH:oil C 5 6 7 4.318 7.682

Coded levels
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Table 7.28: Central composite design matrix. Table 1 of Singhal et al (2012). 

 

 

 

Table 7.29: ANOVA results for the regression model. Table 2 of Singhal et al (2012). 

 

 

Although not mentioned explicitly in the paper, optimization of biodiesel yield was likely obtained 

using the desirability function approach with the constraints shown in Table 3 of the paper and 

reproduced here as Table 7.30.  

Table 7.30: Constraints used to optimize biodiesel yield. Table 3 of Singhal et al (2012). 

 

 
 

The maximum biodiesel yield obtained was 97.86% at a temperature of 64.60 °C, catalyst 

concentration of 1.0 wt %, and a molar ratio of methanol to oil of 6.996:1.  Optimization using the 

genetic algorithm approach apparently gave similar results. 

 

Exp. No. Temperature (A) Catalyst conc. (B) Molar ratio (C) Yield (Y)

1 45 1 5 91.06

2 65 1 5 92.23

3 45 1.5 5 87.3

4 65 1.5 5 85.3

5 45 1 7 91.48

6 65 1 7 97.4

7 45 1.5 7 86.1

8 65 1.5 7 96.71

9 38.18 1.25 6 85.16

10 71.82 1.25 6 91.5

11 55 0.83 6 95.62

12 55 1.67 6 90

13 55 1.25 4.318 82.18

14 55 1.25 7.682 91.9

15 55 1.25 6 92

16 55 1.25 6 92.69

17 55 1.25 6 91.5

18 55 1.25 6 90.93

19 55 1.25 6 90.38

20 55 1.25 6 90.56

Source Degree of freedom (df) Sum of squares (SS) Mean sum of squares (MS) F p

Regression 9 258.2514 28.6946 11.9357 0.0003

Residual 10 24.0410 2.4041

Total 19 282.2924

Process variable Goal Lower limit Upper limit

A: Reaction temperature (°C) In range 45 65

B: Catalyst concentration (wt. %) In range 1.0 1.5

C: Molar ratio (MeOH:oil) In range 5 7
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Case Study #7.9 

Wang, J.P., Yong-Zhen Chen, Xue-Wu Ge, and Han-Qing Yu (2007): Optimization of 

coagulation-flocculation process for a paper-recycling wastewater treatment using response 

surface methodology.  Colloids and Surfaces A: Physicochemical Engineering Aspects, 302, 

pp. 204-210. 

This study used response surface methodology via a near-rotatable central composite design 

(similar to Case Study 7.1) to investigate a coagulation-flocculation process to treat paper-

recycling wastewater. The objective was to minimize turbidity and the sludge volume index.  

Aluminum chloride was used as the coagulant and a modified natural polymer, chitosan-g-PDMC 

(poly(2-methacryloyloxyethyl) trimethyl ammonium chloride) was used as the flocculant. The 

three factors and levels used in the experiment were shown in Table 1 of the paper and are 

reproduced here as Table 7.31.  

Table 7.31: Levels of the variable tested in the 23 central composite design. Table 1 of Wang et al 

(2007). 

 

 

The two responses of interest were the turbidity (NTU) and sludge volume index (SVI).  MATLAB 

Version 6.5 was used for the experimental design and statistical analysis.  The experimental design 

was a three-factor near rotatable CCD with  = ±2.0 and six center points. The total number of 

experimental runs was 20 consisting of eight factorial, six axial, and six center points. The 

experimental design and results were shown in Table 2 of the paper and are reproduced here as 

Table 7.32.   

A full standard second-order quadratic response surface model was fitted to each of the responses. 

The summarized ANOVA results for turbidity and for SVI were shown in Tables 3 and 4 of the 

paper, respectively.  These tables are reproduced here as Tables 7.33 and 7.34, respectively.   

For turbidity, the full second-order regression model in actual units was given as (Equation 3 of 

the paper):  

Turbidity = 120.415 - 0.034 X1 - 0.994 X2 - 25.166 X3 + 0.0000875X1X2 - 0.00371X1X3   

                   - 0.0562X2X3 + 0.0000212 X1
2+ 0.0280X2

2 + 2.398X3
2  

 

From Table 7.33, the R2 value was given as 0.898.  No other goodness of fit statistics were reported 

and the lack of fit was not tested.  Reanalysis of the turbidity data using Design-Expert 12 showed 

that most of the regression coefficients are not statistically significant at the 5% level and the lack 

of fit is highly statistically significant (p-value < 0.0001).  The predicted R2 is only 0.1512 for the 

full model shown.  Using a reduced model with only statistically significant terms and maintaining 

Variables

-2 -1 0 1 2

X1, coagulant dosage (mg/l) 0 500 1000 1500 2000

X2, flocculant dosage (mg/l) 0 8 16 24 32

X3, pH 2 4 6 8 10

Range and levels
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hierarchy would improve the predicted R2 from 0.1512 to 0.3725. However, the lack of fit would 

still be statistically significant. 

 

Table 7.32: CCD and response results for the study of three experimental variables in coded units. 

Table 2 of Wang et al (2007). 

 

 

 

Table 7.33: ANOVA for turbidity. Table 3 of Wang et al (2007). 

 

 

 

Table 7.34: ANOVA for SVI. Table 4 of Wang et al (2007). 

 

 

Run

Coagulant Flocculant pH (X3) Turbidity SVI

dosage (X1) dosage (X2) (NTU) (mg/g)

1 -1 1 -1 22.6 16.3

2 1 -1 1 18 203.3

3 0 0 0 9.2 101.6

4 -1 1 1 23.8 40.7

5 -1 -1 1 30.3 48.8

6 0 0 0 7.3 89.4

7 -1 -1 -1 23.4 16.3

8 1 1 -1 26.5 16.3

9 0 0 0 8.1 81.3

10 1 1 1 15 162.6

11 1 -1 -1 28 20.3

12 0 0 0 8.5 81.3

13 2 0 0 8.5 243.9

14 0 0 2 42.9 130.1

15 0 0 0 8.1 81.3

16 0 0 0 8.9 81.3

17 0 -2 0 24.5 187

18 0 0 -2 52.1 20.3

19 0 2 0 8.1 81.3

20 -2 0 0 52.1 16.3

ResponsesFactors

Item Degrees of Sum of Men square F statistic P > F

freedom squares

Model 9 3534.7 392.7 9.774 0.0007

Error 10 401.8 40.2

Total 19

R2 = 0.898

Item Degrees of Sum of Men square F statistic P > F

freedom squares

Model 9 75647.3 8405.3 6.503 0.0036

Error 10 12924.5 1292.4

Total 19

R2 = 0.854
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For SVI, the full second-order regression model in actual units was given as (Equation 4 of the 

paper):  

SVI = 63.264 - 0.153X1 - 2.981X2 + 9.732X3 - 0.0011X1X2 + 0.034X1X3  

             - 0.350X2X3 + 0.0000292X1
2 + 0.130X2

2 - 1.604X3
2 

 

The R2 value was 0.854. Similar to turbidity, no other goodness of fit statistics were reported. 

Reanalysis of the SVI data using Design-Expert 12 showed that only factor X1, X3, and interaction 

of X1 and X3 are statistically significant at the 5% level. Furthermore, the predicted R2 for the full 

model is negative (-0.1527) indicating that the model is no better than the overall mean.  The lack 

of fit is also statistically significant (p-value = 0.0006).  If a reduced model with only statistically 

significant terms were used, the predicted R2 would improve to 0.592.  

The authors then used each regression equation to perform optimization. For minimum turbidity, 

the optimal conditions of the factors were coagulant dosage of 877 mg/l, flocculant dosage of 22.6 

mg/l, and pH of 6.2, giving a turbidity value of 8.6 NTU.  

For minimum SVI, the optimal conditions of the factors were coagulant dosage of 338 mg/l, 

flocculant dosage of 19.1 mg/l, and pH of 4.5 giving a SVI of 30.9 ml/g. These results were verified 

from additional experimental runs shown in Table 5 of the paper and are reproduced here as Table 

7.35. 

Table 7.35: Measured and calculated values for the confirmation experiments. Table 5 of Wang et 

al (2007). 

 

 

The authors then used multiple response optimization based on the desirability function approach 

to determine the factor values to minimize both turbidity and SVI simultaneously.  The optimal 

factor values were a coagulant dosage of 759 mg/l, flocculant dosage of 22.3 mg/l, and pH of 5.4. 

The corresponding turbidity and SVI obtained were 12.3 NTU and 48.0 ml/g, respectively.  

Given the incorrect choice of models and the significant lack of fit of the chosen models, it is not 

clear whether the results obtained are indeed accurate.  

 

 

 

Run Conditions Parameter Measured Calculated

21 Coagulant dosage = 877 mg/l Turbidity (NTU) 8.7 ± 0.3 8.6

Flocculant dosage = 22.6 mg/l

pH = 6.2

22 Coagulant dosage = 338 mg/l SVI (ml/g) 32.5 ± 2.4 30.9

Flocculant dosage = 19.1 mg/l

pH = 4.5
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Case Study #7.10 

Yuan, X., Jia Liu, Guangming Zeng, Jingang Shi, Jingyi Tong, and Guohe Huang (2008): 

Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response 

surface methodology. Renewable Energy, 33, pp. 1678-1684. 

This study used response surface methodology based on a 24 full-factorial rotatable central 

composite design to investigate the conversion to biodiesel of waste rapeseed oil with high free 

fatty acids as raw material to biodiesel. The goal was to maximize the conversion and to gain 

insights into the process affecting biodiesel production. The four factors and levels investigated 

were shown in Table 1 of the paper and are reproduced here as Table 7.36.  

Table 7.36: Experimental range and levels of the independent variables. Table 1 of Yuan et al 

(2008). 
 

 

The materials and methods used in the experiment were described in the paper. Design-Expert 6.0 

was used for the experimental design and statistical analysis of the data obtained. The response 

variable was the conversion to biodiesel (wt. %). A rotatable CCD with α = ±2 and six center 

points giving a total of 30 runs was used. The experimental design and results were shown in Table 

2 of the paper and are reproduced here as Table 7.37.  

The standard second-order response surface model with linear, two-factor interactions, and 

quadratic terms was fitted to the response. The summarized ANOVA results together with the 

goodness of fit statistics for the full quadratic model were shown in Table 3 of the paper and are 

reproduced here as Table 7.38.   

The estimated regression coefficients and associated statistics for the full model were shown in 

Table 4 of the paper and are reproduced here as Table 7.39. The second-order regression equation 

for biodiesel conversion was given as (Equation 2 of the paper): 

 

Y = 83.03 + 0.80X1 + 0.67X2 - 0.17X3 + 0.58X4 - 0.68X1
2 - 5.05X2

2 -1.322X3
2 - 0.62X4

2 

-0.30X1X2 + 0.65X1X3 - 0.39X1X4 - 1.18X2X3 + 6.875 x 10-3X2X4 + 0.027X3X4 

 

Note that while the full model was highly statistically significant, several of the regression 

coefficients (X1X2, X1X3, X1X4, X2X4, and X3X4), were not statistically significant at the 5% level. 

Furthermore, there was statistically significant lack of fit (p-value=0.0411) of the full model.  

 

 

Variables Symbol coded

-2 -1 0 1 2

Methanol/oil molar ratio X1 4:1 5:1 6:1 7:1 8:1

Catalyst concentration (%) X2 0.4 0.8 1.0 1.2 1.6

Reaction time (min) X3 45 55 65 75 85

Temperature (°C) X4 25 35 45 55 65

Range and levels
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Table 7.37: Full factorial central composite design matrix of four variables in coded and natural 

units along with the observed responses. Table 2 of Yuan et al (2008). 

 

 

 

Table 7.38: Analysis of variance (ANOVA) for the quadratic model. Table 3 of Yuan et al 

(2008). 

 

 

CV = 1.75%, R2 = 0.9664, R = 0.9830, Adj. R2 = 0.9351. 

No. X1 X2 X3 X4 Methanol/oil Catalyst Reaction time T (°C) Conversion to

molar ratio concentration (%) (min) biodiesel (wt%)

1 -1 -1 -1 -1 5 0.8 55 35 71.28

2 1 -1 -1 -1 7 0.8 55 35 74.50

3 -1 1 -1 -1 5 1.2 55 35 76.82

4 1 1 -1 -1 7 1.2 55 35 77.07

5 -1 -1 1 -1 5 0.8 75 35 73.16

6 1 -1 1 -1 7 0.8 75 35 76.72

7 -1 1 1 -1 5 1.2 75 35 70.35

8 1 1 1 -1 7 1.2 75 35 76.06

9 -1 -1 -1 1 5 0.8 55 55 74.58

10 1 -1 -1 1 7 0.8 55 55 76.10

11 -1 1 -1 1 5 1.2 55 55 78.64

12 1 1 -1 1 7 1.2 55 55 78.10

13 -1 -1 1 1 5 0.8 75 55 74.64

14 1 -1 1 1 7 0.8 75 55 78.30

15 -1 1 1 1 5 1.2 75 55 74.87

16 1 1 1 1 7 1.2 75 55 76.71

17 -2 0 0 0 4 1.0 65 45 80.06

18 2 0 0 0 8 1.0 65 45 80.04

19 0 -2 0 0 6 0.6 65 45 60.89

20 0 2 0 0 6 1.4 65 45 64.27

21 0 0 -2 0 6 1.0 45 45 76.95

22 0 0 2 0 6 1.0 85 45 78.04

23 0 0 0 -2 6 1.0 65 25 80.81

24 0 0 0 2 6 1.0 65 65 79.80

25 0 0 0 0 6 1.0 65 45 82.29

26 0 0 0 0 6 1.0 65 45 84.05

27 0 0 0 0 6 1.0 65 45 83.39

28 0 0 0 0 6 1.0 65 45 82.50

29 0 0 0 0 6 1.0 65 45 82.55

30 0 0 0 0 6 1.0 65 45 83.40

Sources of Sum of Degrees of Mean F-value Prob > F

variations squares freedom square

Model 778.17 14 55.82 30.82 <0.0001

Residual 27.05 15 1.80

Lack of fit 24.68 10 2.47 5.22 0.0411

Pure error 2.37 5 0.47

Total 805.22 29
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Table 7.39: The least squares fit and parameter estimates (significance of regression coefficients). Table 

4 of Yuan et al (2008). 

 

A reduced quadratic model with only statistically significant terms and terms to maintain hierarchy 

would have provided a better model with a higher predicted R2. That is, predicted R2 (full model) 

= 0.8192, predicted R2 (reduced model) = 0.8590. 

 

The optimal values of the factors in coded units were X1 = 0.50, X2 = 0.05, X3 = 0.04, and X4 = 

0.32 which corresponded to the actual units of methanol/oil molar ratio of 6.5:1, catalyst 

concentration of 1.0%, reaction time of 65.4 min, and temperature of 48.2 °C. The maximum 

biodiesel conversion at these factor values was 83.34%. The method used for optimization was not 

discussed in the paper.   

Model Parameter Standard Computed P-value

Term estimate error t-value

Intercept 83.03 0.55 150.96

X1 0.80 0.27 2.96 0.0180

X2 0.67 0.27 2.481 0.0276

X3 -0.17 0.27 -0.63 0.5474

X4 0.58 0.27 2.15 0.0502

X1² -0.68 0.26 -1.15 0.0180

X2² -5.05 0.26 -3.47 <0.0001

X3² -1.32 0.26 0.02 0.0001

X4² -0.62 0.26 0.08 0.0294

X1X2 -0.29 0.34 -2.62 0.3905

X1X3 0.65 0.34 -19.42 0.0727

X1X4 -0.39 0.34 -5.08 0.2657

X2X3 -1.18 0.34 -2.38 0.0030

X2X4 6.875E-03 0.34 -0.88 0.9839

X3X4 0.027 0.34 1.91 0.9373
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______________________________________________ 
8. RSM: CENTRAL COMPOSITE DESIGNS 

(Face-centered) 
 

10 case studies are presented in this Chapter that use Response Surface Methodology that is based 
on face-centered Central Composite Designs or FCD designs. Face-centered designs are special 
cases of CCD where the axial points are at the -1 and +1 levels. The number of factors ranges from 
two to five.  

 

Case Study #8.1 

Alvarez, M. J., N. Gil-Negrete, L. Ilzarbe, M. Tanco, E. Viles, and A. Asensio (2009): A computer 
experiment application to the design and optimization of a capacitive accelerometer. Applied 
Stochastic Models in Business and Industry, 25, pp. 151-162.  

This study used computer experiments based on finite element analyses to investigate the 
geometrical factors that affect the performance of a capacitive accelerometer for measuring 
accelerations acting on buildings. The five factors chosen were: the thickness of the seismic mass, 
X1; the thickness of the beams, X2; the area of the seismic mass, X3; the length of the beams, X4; 
and the width of the beams, X5.  The response was the natural frequency of the accelerometer.  

The authors used response surface methodology and a second-order polynomial to model the 
natural frequency as a function of the five factors.  A face-centered central composite design (FCD) 
was chosen and the factors and levels were shown in Table I of the paper and are reproduced here 
as Table 8.1.   

The FCD with five factors require 32 factorial points, 10 axial points, and one center point. Only 
one center point was used because since this was a computer based experiment, identical results 
would be produced on replicated runs. The experimental design and responses are shown in Table 
II of the paper and are shown here as Table 8.2.  Minitab software was used for statistical analyses. 

 
Table 8.1: Factor and levels. Table I of Alvarez et al (2009). 
 

 

Level
X1: thickness of 

seismic mass
X2: thickness of 

beams
X3: area seismic 

mass
X4: length of 

beams
X5: width of 

beams
(µm) (µm) (µm) x (µm) (µm) (µm)

1 433 17.5 3050 x 3050 500 900

0 400 12.5 2050 x 2050 1100 580

-1 367 7.5 1050 x 1050 1700 260
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Table 8.2: Experimental matrix and response values for FCD design. Table II of Alvarez et al 
(2009). 
 

 
 

Thickness 
seismic mass

Thickness of 
beams

Area seismic 
mass

Length of 
beams

Width of 
beams y= Frec.

Test X1 X2 X3 X4 X5 (Hz) ln y
1 -1 -1 -1 -1 -1 5118.3 8.54057
2 1 -1 -1 -1 -1 4961.9 8.50954
3 -1 1 -1 -1 -1 17470.0 9.76824
4 1 1 -1 -1 -1 16957.0 9.73844
5 -1 -1 1 -1 -1 1562.4 7.35398
6 1 -1 1 -1 -1 1462.2 7.28770
7 -1 1 1 -1 -1 5397.4 8.59367
8 1 1 1 -1 -1 5053.2 8.52778
9 -1 -1 -1 1 -1 839.3 6.73257

10 1 -1 -1 1 -1 814.0 6.70196
11 -1 1 -1 1 -1 2901.8 7.97309
12 1 1 -1 1 -1 2818.2 7.94385
13 -1 -1 1 1 -1 244.2 5.49799
14 1 -1 1 1 -1 228.5 5.43154
15 -1 1 1 1 -1 861.0 6.75809
16 1 1 1 1 -1 806.1 6.69221
17 -1 -1 -1 -1 1 9458.6 9.15468
18 1 -1 -1 -1 1 9171.6 9.12387
19 -1 1 -1 -1 1 32463.0 10.38786
20 1 1 -1 -1 1 31522.0 10.35844
21 -1 -1 1 -1 1 2739.1 7.91538
22 1 -1 1 -1 1 2564.3 7.84944
23 -1 1 1 -1 1 9417.4 9.15031
24 1 1 1 -1 1 8825.3 9.08538
25 -1 -1 -1 1 1 1489.1 7.30593
26 1 -1 -1 1 1 1445.9 7.27649
27 -1 1 -1 1 1 5039.4 8.52504
28 1 1 -1 1 1 4906.0 8.49821
29 -1 -1 1 1 1 482.1 6.17815
30 1 -1 1 1 1 451.5 6.11258
31 -1 1 1 1 1 1691.0 7.43308
32 1 1 1 1 1 1585.2 7.36847
33 -1 0 0 0 0 2408.4 7.78672
34 1 0 0 0 0 2276.4 7.73035
35 0 -1 0 0 0 1099.2 7.00234
36 0 1 0 0 0 3825.7 8.24950
37 0 0 -1 0 0 5194.9 8.55543
38 0 0 1 0 0 1493.1 7.30861
39 0 0 0 -1 0 7080.6 8.86511
40 0 0 0 1 0 1209.4 7.09788
41 0 0 0 0 -1 1559.9 7.35238
42 0 0 0 0 1 2935.2 7.98453
43 0 0 0 0 0 2337.6 7.75688
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The estimated regression coefficients and statistical significance of a full quadratic model were 
shown in Table III of the paper and are reproduced here as Table 8.3.  The polynomial prediction 
equation in coded factors for the logarithm of the natural frequency using only statistically 
significant terms at the 5% level was given as: 

ln y = 7.7587 − 0.02409 𝑥𝑥1 + 0.61991 𝑥𝑥2 − 0.60441 𝑥𝑥3 − 0.90245 𝑥𝑥4 + 0.30307 𝑥𝑥5
− 0.13301 𝑥𝑥22 + 0.17309 𝑥𝑥32 + 0.22256 𝑥𝑥42 − 0.0948 𝑥𝑥52 + 0.0104 𝑥𝑥3 𝑥𝑥4 

The model has an adjusted R2 of 0.999, and all regression assumptions were checked and fulfilled.  

Table 8.3:  Estimated regression coefficients. Table III of Alvarez et al (2009). 
 

 
 

The ANOVA results, showing the contribution of the various order of terms, considering only the 
statistically significant terms, were shown in Table IV of the paper.  The table is reproduced here 
as Table 8.4.  

 

 

Coeff SE coeff T P
Constant 7.75870 0.01033 751.457 0.000

x1 Thickness of seismic mass -0.02409 0.00479 -5.029 0.000
x2 Thickness of beams 0.61991 0.00479 129.389 0.000
x3 Area of seismic mass -0.60441 0.00479 -126.154 0.000
x4 Length of beams -0.90245 0.00479 -188.362 0.000
x5 Width of beams 0.30307 0.00479 63.257 0.000
x1

2 Thickness of mass x thickness of mass -0.00040 0.01783 -0.022 0.982
x2

2 Thickness of beams x thickness of beams 0.13301 0.01783 -7.461 0.000
x3

2 Area seismic mass x area seismic mass 0.17309 0.01783 9.709 0.000
x4

2 Length of beams x length of beams 0.22256 0.01783 12.484 0.000
x5

2 Width of beams x width of beams -0.09048 0.01783 -5.075 0.000
x1x2 Thickness s. mass x thickness of beams 0.00030 0.00494 0.060 0.952
x1x3 Thickness of s. mass x area seismic mass -0.00901 0.00494 -1.825 0.082
x1x4 Thickness of s. mass x thickness of beams 0.00017 0.00494 0.035 0.973
x1x5 Thickness of s. mass x width of beams 0.00024 0.00494 0.048 0.962
x2x3 Thickness of beams x area seismic beams 0.00421 0.00494 0.852 0.403
x2x4 Thickness of beams x length of beams 0.00250 0.00494 0.506 0.618
x2x5 Thickness of beams x width of beams -0.00154 0.00494 -0.312 0.758
x3x4 Area of seismic mass x length of beams 0.01040 0.00494 2.107 0.047
x3x5 Area of sesmic mass x width of beams 0.00711 0.00494 1.440 0.164
x4x5 Length of beams x width of beams 0.00816 0.00494 1.653 0.113

Term
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Table 8.4: Analysis of variance for ln y.  Table IV of Alvarez et al (2009). 
 

 
 
From Table 8.4, it shows that linear terms have more significant contribution than quadratic terms, 
and interaction terms have the least contribution. Furthermore, among the five factors, the seismic 
mass has the lowest influence on the natural frequency.  

The authors did not provide any additional experimental runs that were not used for model 
development, to verify the model.  

 

Case Study #8.2 

Chiang, Ko-Ta, and Fu-Ping Chang (2006): Application of response surface methodology in the 
parametric optimization of a pin-fin type heat sink. International Communications in Heat and 
Mass Transfer, 33, pp. 836-845.  

This study used response surface methodology to find optimal values for the design parameters of 
a pin-fin type heat sink (PFHS) to achieve high thermal performance (or cooling efficiency). These 
heat sinks are widely used to provide cooling of electronic components. Experiments were 
performed using a face-centered central composite design (FCD) with four factors.  The factors 
and levels used in the experiment were given in Table 1 of the paper and are shown here in Table 
8.5. 

Table 8.5:  Design scheme of designing parameters and their levels. Table 1 of Chiang et al (2006). 
 

 

The two responses of relevance in this experiment were the thermal resistance, Rth (°C/W) and 
pressure drop, ∆P (Pa). The design and other technical details of the heat sink were described in 
detail in the paper.  

Source DF Seq SS Adj SS Adj MS F P
Regression 10 56.6842 56.6842 5.6684 7443.81 0.000
Linear 5 56.3190 56.3190 11.2638 14791.72 0.000
Square 4 0.3617 0.3617 0.0904 118.74 0.000
Interaction 1 0.0035 0.0035 0.0035 4.55 0.041
Residual error 32 0.0244 0.0244 0.0008
Total 42
R2 = 0.999

Symbol Factor Unit Low (-1) High (+1)
A Fin Height, H mm 50 60
B Pin diameter, D mm 4 6
C Longitudinal pitch, S1 mm 6 10
D Transverse pitch, S2 mm 8 12

Levels
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The FCD had a total of 30 experimental runs (16 factorial points, eight axial points, and six center 
points).  The experimental design and measured responses were given in Table 2 of the paper and 
are reproduced here as Table 8.6.  The software used for the design and analysis of the experiment 
was not mentioned.  

Table 8.6: Design of experimental matrix and results for the PFHS performance characteristics. 
Table 2 of Chiang et al (2006).  

 

The authors fitted a second-order polynomial regression model to each of the responses.  The full 
ANOVA results including all terms in the models were given in Tables 3 and 5 of the paper for 
the thermal resistance and pressure drop, respectively.  The authors also showed ANOVA tables 
resulting from using the backward elimination procedure to reduce the model. These reduced 
ANOVA tables for thermal resistance and pressure drop were shown as Tables 4 and 6 in the paper 
and are reproduced here as Tables 8.7 and 8.8, respectively.  It is of interest to note that after using 
backward elimination, there are still statistically insignificant terms left in the ANOVA tables.  It 
is also likely that statistically significant terms have been incorrectly left out of the tables. Hence 
the models developed by the authors may not be the best models.  

Exp No. (A) Fin height (B) Pin diameter (C) Long. Pitch (D) Trans. Pitch Therm resist, Rth (°C/W) Pressure drop, ∆P (Pa)
1 50 4 6 8 0.258 28.3
2 60 4 6 8 0.213 23.8
3 50 6 6 8 0.243 26.8
4 60 6 6 8 0.201 22.6
5 50 4 10 8 0.241 26.6
6 60 4 10 8 0.198 22.3
7 50 6 10 8 0.217 24.2
8 60 6 10 8 0.193 21.8
9 50 4 6 12 0.235 26.2
10 60 4 6 12 0.204 22.9
11 50 6 6 12 0.231 25.6
12 60 6 6 12 0.201 20.9
13 50 4 10 12 0.236 26.1
14 60 4 10 12 0.198 21.8
15 50 6 10 12 0.212 23.7
16 60 6 10 12 0.189 21.4
17 50 5 8 10 0.231 25.6
18 60 5 8 10 0.203 22.8
19 55 4 8 10 0.224 24.9
20 55 6 8 10 0.211 23.6
21 55 5 6 10 0.235 25.2
22 55 5 10 10 0.214 23.9
23 55 5 8 8 0.223 24.8
24 55 5 8 12 0.218 23.7
25 55 5 8 10 0.224 24.8
26 55 5 8 10 0.232 24.6
27 55 5 8 10 0.223 25.1
28 55 5 8 10 0.222 24.7
29 55 5 8 10 0.227 24.4
30 55 5 8 10 0.223 24.5

Design parameters Experimental results
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Table 8.7: ANOVA table for the thermal resistance (after backward elimination). Table 4 of 
Chiang et al (2006). 
 

 
 
 
Table 8.8: ANOVA table for the pressure drop (after backward elimination). Table 6 of Chiang et 
al (2006). 
 

 

 

From Table 8.7, the final response equations for thermal resistance in terms of coded and actual 
factors were given as Equations 5 and 6, respectively, in the paper.  They are reproduced here 
below: 

Source Sum of squares DF Mean square f-value Prob>F
Model 0.00694 5 0.001389 40.3058 <0.0001 Significant
A 0.00513 1 0.005134 148.9730 <0.0001
B 0.00066 1 0.000660 19.1520 0.0002
C 0.00084 1 0.000841 24.3877 <0.0001
D 0.000221 1 0.000221 6.3980 0.0184
AB 9.03E-05 1 9.03E-05 2.6187 0.1187
Residual 0.000827 24 3.45E-05
Lack of fit 0.000756 19 3.98E-05 2.8098 0.1279 Not significant
Pure error 7.083E-05 5 1.42E-05
Cor. Total 0.007772 29
Standard deviation = 0.005870 R2 = 0.89358
Mean = 0.219333 R2 adjusted = 0.87141
Coefficient of variation = 2.676572 Predicted R2 = 0.82395
PRESS = 0.001368 Adequate precision = 25.3505

Source Sum of squares DF Mean square f-value Prob>F
Model 79.69944 5 15.93988 65.7850 <0.0001 Significant
A 59.76888 1 59.76888 246.6720 <0.0001
B 8.405 1 8.40500 34.6880 <0.0001
C 6.12500 1 6.12500 25.2780 <0.0001
D 4.40055 1 4.40055 18.1610 0.0003
CD 1.00E+00 1 1.00000 4.1270 0.0534
Residual 5.81522 24 0.24230
Lack of fit 5.506888 19 0.28984 4.7000 0.0572 Not significant
Pure error 0.308330 5 0.061666
Cor. Total 85.512466 29
Standard deviation = 0.492240 R2 = 0.93199
Mean = 24.253333 R2 adjusted = 0.91783
Coefficient of variation = 2.029579 Predicted R2 = 0.87782
PRESS = 10.447778 Adequate precision = 32.55552
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Coded factors: 

Thermal resistance = 0.2193 – 0.0169 A – 0.0061 B – 0.0068 C – 0.0035 D + 0.0024 AB 

Actual factors: 

Thermal resistance = 0.6108 – 0.0058 H – 0.0322 D – 0.0034 S1 – 0.0018 S2 + 0.0005 HD. 

 

From Table 8.8, the final response equations for pressure drop in terms of coded and actual factors 
were given as Equations 7 and 8, respectively, in the paper.  These equations are reproduced below: 

Coded factors: 

Pressure drop = 24.2533 – 1.8222 A – 0.6833 B – 0.5833 C – 0.4944 D + 0.25 CD 

Actual factors: 

Pressure drop = 57.52 – 0.3644 H – 0.6833 D – 0.9166 S1 – 0.7472 S2 + 0.0625 S2. 

 

The authors then went on to find the optimal values for the fin parameters [H, D, S1, S2] to 
minimize thermal resistance and pressure drop using a sequential approximation optimization 
method.  They also set the constraints for the parameters as: 50 ≤ H ≤ 60 mm, D ≤ 6 mm, 6 ≤ S1 
≤ 8, 8 ≤ S2 ≤ 12 mm, and mass of the PFHS ≤ 620 g.  

The optimal settings obtained were shown in Table 7 of the paper and are shown here as Table 8.9.  

 

Table 8.9: The optimal designing parameters. Table 7 of Chiang et al (2006).  

 

 

To verify the adequacy of the developed models, three confirmation runs were performed. The 
results obtained for the thermal resistance and pressure drop using the regression models were then 
compared to those obtained experimentally.  These comparisons were shown in Table 8 of the 
paper and are reproduced here as Table 8.10. However, no confirmation runs were done at the 
optimal settings.  

Parameters Unit Optimal value
Fin height, H mm 60
Pin diameter, D mm 4.76
Longitudinal pitch, S1 mm 10
Transverse pitch, S2 mm 11.96
Predicted value
Thermal resistance, Rth °C/W 0.192
Pressure drop, ∆P Pa 21.71
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Table 8.10:  Confirmation experiments. Table 8 of Chiang et al (2006). 

 

 

Based on the confirmation runs, the authors concluded that the developed models were accurate, 
even though no confirmation runs were performed at the optimal settings.   

 

Case Study #8.3 

Jenarthanan, M. P. and R. Jeyapaul (2014): Machinability study of carbon fibre reinforced polymer 
(CFRP) composites using design of experiment technique. Pigment & Resin Technology, 43/1, 
pp. 35-44. 

This study investigated the influence of three input CNC machining parameters on the surface 
delamination of carbon fibre reinforced polymer (CFRP) when milled by a machine with a solid 
carbide end mill coated with crystalline diamond.  The input parameters were the cutting speed, 
feed rate, and depth of cut.  A second-order response surface model based on a face-centred central 
composite design (FCD) was used.  The FCD had eight factorial points, six axial points, and six 
center points giving a total of 20 run combinations.  The response measured was the delamination 
factor, Fd. The materials and experimental procedure used were described in the paper.  The factors 
and their levels used were given in Table II of the paper and are reproduced here as Table 8.11.   

Table 8.11: Process control parameters and their levels. Table II of Jenarthanan et al (2014). 
 

 
The design and analysis of the experimental data were carried out using Design-Expert 8.0 
software.  The experimental layout in coded and actual factors and the results were shown in Table 
III of the paper and are reproduced here as Table 8.12.   

The authors fitted a full second-order (main effects, two-factor interactions, and quadratic terms) 
model to the responses.  The ANOVA results were shown in Table IV of the paper and are shown 
here as Table 8.13.  

 

Exp No.
A B C D Exp. Predicted Error (%) Exp. Predicted Error (%)

1 50 4 6 12 0.235 0.247 -5.11 26.2 26.5 -1.15
2 55 5 8 10 0.224 0.219 2.23 24.8 24.2 2.42
3 60 6 10 8 0.193 0.202 4.66 21.8 22.7 -4.13

Designing parameters Pressure drop, ∆PThermal resistance, Rth

Process parameters Units Notattion Variable -1 0 1
Feed rate mm/rev f A 0.04 0.08 0.12
Cutting speed m/min V B 50 75 100
Depth of cut mm D C 0.05 0.15 0.25

Levels
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Table 8.12: Layout of full factorial face-centred central composite design with results. Table III of 
Jenarthanan et al (2014). 
 

 
 
Table 8.13:  ANOVA for delamination. Table IV of Jenarthanan et al (2014). 
 

 
 

Delamination factor
Run A B C f V D Fd

1 0 0 0 0.08 75 0.15 1.0209
2 -1 -1 -1 0.04 50 0.05 1.0113
3 1 0 0 0.12 75 0.15 1.0537
4 1 1 1 0.12 100 0.25 1.0654
5 1 -1 -1 0.12 50 0.05 1.0426
6 0 0 0 0.08 75 0.15 1.0319
7 -1 -1 1 0.04 50 0.25 1.0063
8 0 0 1 0.08 75 0.25 1.0337
9 0 0 -1 0.08 75 0.05 1.0238
10 -1 1 -1 0.04 100 0.05 1.0051
11 0 1 0 0.08 100 0.15 1.0408
12 1 -1 1 0.12 50 0.25 1.0436
13 0 0 0 0.08 75 0.15 1.0319
14 -1 1 1 0.04 100 0.25 1.0186
15 1 1 -1 0.12 100 0.05 1.0579
16 0 0 0 0.08 75 0.15 1.0319
17 0 0 0 0.08 75 0.15 1.0319
18 0 -1 0 0.08 50 0.15 1.0258
19 0 0 0 0.08 75 0.15 1.0319
20 -1 0 0 0.04 75 0.15 1.0055

Coded variables Uncoded variables

Source Sum of squares df Mean squares F-value p-value Effect % contribution
Model 5.533 x 10-03 9 6.148 x 10-04 386.5 <0.0001 Significant 99.71
A 4.844 x 10-03 1 4.844 x 10-03 3045.7 <0.0001 Significant 87.28
B 5.314 x 10-04 1 5.314 x 10-04 334.1 <0.0001 Significant 9.56
C 1.129 x 10-04 1 1.129 x 10-04 71 <0.0001 Significant 2.03
AB 4.961 x 10-06 1 4.961 x 10-06 3.1 0.1078 Insignificant 0.08
AC 6.661 x 10-06 1 6.661 x 10-06 4.2 0.0679 Insignificant 0.11
BC 3.612 x 10-07 1 3.612 x 10-07 0.2 0.6439 Insignificant 0.00
A2 1.903 x 10-06 1 1.903 x 10-06 1.2 0.2997 Insignificant 0.03
B2 3.120 x 10-05 1 3.120 x 10-05 19.6 0.0013 Significant 0.55
C2 3.841 x 10-06 1 3.841 x 10-06 2.4 0.1512 Insignificant 0.07
Error 1.591 x 10-05 10 1.591 x 10-06 Insignificant 0.29
Total 5.549 x 10-03 19
Notes: R2 = 99.91; adjusted R2 = 99.46
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From Table 8.13, many of the model terms were not statistically significant at the 5% level.  Only 
the main effects A, B, C, and the quadratic term B2 were statistically significant. However, the 
authors suggested a final model with all terms regardless of statistical significance.  The final 
model in terms of coded factors was: 

Delamination Factor (Fd) = 1.03 + 0.022 A + 7.290 x 10-03 B + 3.360 x 10-03 C  
                                           + 7.875 x 10-04 AB + 9.125 x 10-04 AC – 2.125 x 10-04 BC  
                                           – 8.318 x 10-04 A2 + 3.368 x 10-03 B2 – 1.182 x 10-03 C2 
 

And, the final model in terms of actual factors was: 

Delamination Factor (Fd) = 0.99042 + 0.54015 feedrate – 5.67014 x 10-04 cuttingspeed  
                                           + 0.057180 depthofcut + 7.87500 x 10-04 feedrate x cuttingspeed  
                                           + 0.22813 feedrate x depthofcut  
                                            – 8.5000 x 10-05 cuttingspeed x depthofcut  
                                            + 5.38909 x 10-06 (cuttingspeed)2 – 0.11818 (depthofcut)2 
 
There is a squared term (feedrate)2 missing from the model with actual factors. This term may have 
been accidentally left out by the authors.  

The adjusted R2 for the model was 99.46 which was an excellent fit to the data.  The authors also 
ran 20 additional confirmation experiments to validate the model. The results from experiments 
were compared those obtained from the regression model. These comparison results were shown 
in Table VI of the paper.  The error was found to be within ±0.3 percent. Since the factor settings 
were not given, it is not possible to reproduce the results shown here.  

Reanalyses of the published data using both Design-Expert 12 and Minitab 18 did not reproduce 
the results reported by the authors. Some of the F-values differed by a factor of 10. Hence, it is 
possible the ANOVA results shown were incorrect. If this is so, then the models developed were 
also incorrect.  

 

Case Study #8.4 

Kwon, J-H, Sang-Moon Hwang, Chang-Min Lee, Kwang-Suk Kim, and Gun-Yong Hwang 
(2009): Application of response surface methodology (RSM) in microspeaker design used in 
mobile phones. IEEE Transactions on Magnetics, Vol. 45, N. 10, pp. 4550-4553. 

This study investigated the design of a microspeaker used in mobile phones using response surface 
methodology based on a face-centered central composite design.  The parameters that influence a 
magnetic circuit design of the microspeaker included the dimensions of the top plate, yoke, and 
radius of the inner magnet.  The design drawing and constraints were given in the paper. The 
factors and levels used in the study are summarized in Table 8.14.  The responses were the mean 
and variance of the electromagnetic force obtained using finite element analysis. Hence this is a 
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computer based experiment.  The goal was to design a microspeaker with a high mean 
electromagnetic force but with minimum variance.  

Table 8.14:  Factors and levels used in the experiment. 

 

The authors used a three-factor full-factorial face-centered central composite design (FCD) with 
eight factorial points, six axial points, and one center point (total of 15 run combinations).  The 
FCD design together with the mean and variance of the electromagnetic force were given in Table 
1 of the paper and are reproduced here as Table 8.15.  

Table 8.15: Experimental design matrix and results. Table 1 of Kwon et al (2009). 
 

 

Full second-order regression models were fitted to the two responses. No ANOVA results were 
given in the paper. Only the fitted regression models in terms of coded factors for the mean and 
variance of the electromagnetic force were shown (Equation 4 and 5, respectively).  These 
equations are: 

𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 49.4 − 0.03 𝑥𝑥1 + 0.66 𝑥𝑥2 − 0.83 𝑥𝑥3 − 1.25 x12 − 0.10 x22 − 1.85 x32 + 0.075 x1x2
− 0.675 x1x3 + 0.15 x2𝑥𝑥3 

𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 24.98 + 15.04 𝑥𝑥1 + 0.66 𝑥𝑥2 + 8.12 𝑥𝑥3 + 5.38 x12 − 0.62 x22 − 0.32 x32
+ 0.4125 x1x2 + 9.3875 x1x3 + 0.4625 x2𝑥𝑥3 

Factor Description Unit -1 0 1
x1 Radius of inner magnet mm 3.3 3.8 4.3
x2 Thickness of yoke mm 0.2 0.3 0.4
x3 Thickness of top plate mm 0.2 0.3 0.4

Levels

Std Ord x1 x2 x3 Mean (mN) Variance {x10-6)
1 -1 -1 -1 45.9 16.6
2 1 -1 -1 47.1 26.5
3 -1 1 -1 46.8 17.3
4 1 1 -1 48.3 27.0
5 -1 -1 1 45.3 12.9
6 1 -1 1 43.8 58.5
7 -1 1 1 46.8 13.6
8 1 1 1 45.6 62.7
9 -1 0 0 48.3 12.4
10 1 0 0 48.0 48.5
11 0 -1 0 48.7 24.2
12 0 1 0 49.9 24.7
13 0 0 -1 48.4 14.3
14 0 0 1 46.7 35.2
15 0 0 0 49.4 24.6

ResponsesCoded factors
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There was no indication as to which of the regression coefficients were statistically significant. 
Not goodness-fit-statistics were given and no assumptions checks were mentioned.  

Using the developed regression models, the authors obtained the following dimensions (in coded 
factors) that minimized variance and kept the mean value above 99% of its possible maximum:  

 x1 = -0.41,  x2 = 1, and x3 = -0.5 

There was also a limitation in the manufacturing process in that the thicknesses of the yoke sand 
top plate (x2 and x3, respectively) can only be produced in intervals of 0.5 mm.  

The authors concluded that the combined use of RSM and finite element analysis in the design of 
the microspeaker had produced a design that minimized variance while maximizing 
electromagnetic force.  

 

Case Study #8.5 

Mohajeri, L., Hamidi Abdul Aziz, Mohamed Hasnain Isa, and Mohammad Ali Zahed (2010): A 
statistical experiment design approach for optimizing biodegradation of weathered crude oil in 
coastal sediments, Bioresource Technology, 1011, pp. 893-900. 

This study used a face-centered central composite design (FCD) to develop a second-order 
response surface equation to model the percentage removal of weathered crude oil (WCO) as a 
function of four independent variables – initial oil concentration, biomass, nitrogen and 
phosphorus concentrations. The factors and levels used in the experiment were given in Table 2 of 
the paper and are reproduced here as Table 8.16.  
 
Table 8.16: Coded and actual values of variables used in the response surface study. Table 2 of 
Mohajeri et al (2010). 
 

 
 
The FCD consisted of 16 factorial points, eight axial points, and six center points. Design-Expert 
6.07 was used for the experimental design and subsequent statistical analysis and optimization. 
The background of the study and the laboratory methods used were given in the paper.  The 
experimental matrix and the results were shown in Table 3 and 4 of the paper and are combined 
here as Table 8.17. Three control experiments were also conducted but were not used as part of 
the experimental design and analysis.   
 

Factor Symbol
Low level (-1) Center (0) High level (+1)

Oil (g) A 2 16 30
Biomass B 0 1 2
Nitrogen (g) C 0.2 1.6 3
Phosphorus (g) D 0.02 0.16 0.3

Coded levels of variables
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Table 8.17: Experimental matrix for central composite design (CCD) for overall optimization and 
results of WCO removal. Tables 3 and 4 of Mohajeri et al (2010). 
 

 

The authors fitted a full second order regression model to the WCO removal percentage data and 
the ANOVA results, showing only the statistically significant terms at the 5% level, were given in 
Table 5 of the paper. The table is reproduced here as Table 8.18.   

 

 

Run no. Point type
Oil (g) Biomass N (g) P (g) Observed Predicted StD

1 Fact 2 0 0.2 0.02 47.01 50.59 2.53
2 Fact 30 0 0.2 0.02 15.62 16.79 0.83
3 Fact 2 2 0.2 0.02 67.85 62.48 3.79
4 Fact 30 2 0.2 0.02 19.78 19.55 0.16
5 Fact 2 0 3 0.02 54.06 49.98 2.88
6 Fact 30 0 3 0.02 51.25 50.71 0.38
7 Fact 2 2 3 0.02 60.24 61.87 1.15
8 Fact 30 2 3 0.02 53.57 53.47 0.07
9 Fact 2 0 0.2 0.16 58.96 58.12 0.60

10 Fact 30 0 0.2 0.16 25.63 24.32 0.93
11 Fact 2 2 0.2 0.16 66.33 70.01 2.60
12 Fact 30 2 0.2 0.16 27.27 27.07 0.14
13 Fact 2 0 3 0.16 63.01 64.75 1.23
14 Fact 30 0 3 0.16 66.02 65.48 0.38
15 Fact 2 2 3 0.16 77.13 76.64 0.35
16 Fact 30 2 3 0.16 69.87 68.24 1.16
17 Axial 2 1 1.6 0.09 76.58 78.98 1.70
18 Axial 30 1 1.6 0.09 52.23 57.88 4.00
19 Axial 16 0 1.6 0.09 68.75 69.56 0.57
20 Axial 16 2 1.6 0.09 74.17 76.88 1.92
21 Axial 16 1 0.2 0.09 43.89 43.41 0.34
22 Axial 16 1 3 0.09 59.68 63.69 2.83
23 Axial 16 1 1.6 0.02 51.85 55.78 2.78
24 Axial 16 1 1.6 0.16 67.33 66.93 0.29
25 Center 16 1 1.6 0.09 71.86 68.43 2.42
26 Center 16 1 1.6 0.09 69.08 68.43 0.46
27 Center 16 1 1.6 0.09 72.38 68.43 2.79
28 Center 16 1 1.6 0.09 68.33 68.43 0.07
29 Center 16 1 1.6 0.09 70.15 68.43 1.21
30 Center 16 1 1.6 0.09 73.9 68.43 3.87
31 Control 2 0 0 0 12.6 - -
32 Control 16 0 0 0 10.9 - -
33 Control 30 0 0 0 9.1 - -

Percent WCO removalFactors
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Table 8.18: Analysis of variance for response surface quadratic model terms. Table 5 of Mohajeri 
et al (2010). 
 

 
The regression model based on only statistically significant terms is given by (Equation 3 in the 
paper):  

WCO removal (percent) = 68.43 – 10.55 A + 3.66 B + 10.14 C + 5.57 D + 4.79 B2  
                                            – 14.89 C2 – 7.08D2 – 2.28 AB + 8.63 AC + 1.81 CD 
 
The model has a R2 of 0.9732, adjusted R2 of 0.9591, and predicted R2 of 0.9336. The interpretation 
of the interaction terms were given in the paper.  
 
The authors used the developed regression model to obtain factor settings to maximize WCO 
removal for initial oil concentrations of 2, 16, and 30 g/kg.  The results comparing observed and 
predicted values were given in Table 6 of the paper and are reproduced here as Table 8.19.   
 
Table 8.19: Optimum conditions found by Design-Expert for the WCO bioremediation. Table 6 of 
Mohajeri et al (2010).  
 

 
 
The authors also compared the unoptimized values at for 2, 16, and 30 g/kg (77.13%, 74.17%, and 
69.87%, respectively) of initial oil concentration with the optimized values (83.13%, 78.06%, and 
69.92%, respectively).   

Source Sum of Squares df Mean Square F-value p-value Remarks
Model 8106.65 10 810.67 69.04 < 0.0001 significant
A-A 2004.08 1 2004.08 170.68 < 0.0001 significant
B-B 241.27 1 241.27 20.55 0.0002 significant
C-C 1850.14 1 1850.14 157.57 < 0.0001 significant
D-D 559.12 1 559.12 47.62 < 0.0001 significant
B² 65.1 1 65.1 5.54 0.0294 significant
C² 629.04 1 629.04 53.57 < 0.0001 significant
D² 142.34 1 142.34 12.12 0.0025 significant
AB 83.45 1 83.45 7.11 0.0153 significant
AC 1192.32 1 1192.32 101.55 < 0.0001 significant
CD 52.49 1 52.49 4.47 0.0479 significant
Residual 223.09 19 11.74
Lack of Fit 200.51 14 14.32 3.17 0.1044 not significant
Pure Error 22.58 5 4.52
Cor Total 8329.74 29

Oil (g) Biomass N (g) P (g) Observed Predicted Percent error StD
2 2 0.680 0.140 83.13 85.01 -2.26 1.33
16 2 2.164 0.231 78.06 80.59 -3.24 1.79
30 2 2.520 0.250 69.92 71.54 -2.32 1.15

WCO percent removal
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Case Study #8.6 

Noordin, M. Y., V.C. Venkatesh, S. Sharif, S. Elting, and A. Abdullah (2004): Application of 
response surface methodology in describing the performance of coated carbide tools when 
turning AISI 1045 steel. Journal of Materials Processing Technology, 145, pp. 46-58.  

This study investigated the factors that influence the surface roughness and tangential force of a 
multilayer tungsten carbide tool when turning AISI 1045 steel.  The factors investigated were the 
cutting speed, feed, and the side cutting edge angle (SCEA) of the cutting edge.  The experiments 
were based on a face-centered central composite design (FCD). The factors and levels used in the 
experiment were shown in Table 1 of the paper and are reproduced here as Table 8.20.  
 
Table 8.20: Factors and levels for response surface study. Table 1 of Noordin et al (2004). 
 

 

The FCD consisted of 16 experimental points (eight factorial points, six axial points, and two 
center points). The responses measured were the surface roughness, Ra (µ) of the turned surface, 
and the main cutting force, i.e. the tangential force, Fc (N).  The experimental design and results 
were shown in Tables 2 and 3 of the paper. The tables are combined here as Table 8.21. 

Table 8.21: Completed design layout and experimental results. (Tables 2 and 3 of Noordin et al 
(2004). 
 

 

Factor Low level (-1) High Level (+1)
A - cutting speed (m/min) 240 375
B - feed (mm/rev) 0.18 0.28
C - SCEA (°) -5 0

Std No. Run A-cutting B - feed C - SCEA Surface Tangential
speed (m/min) (mm/rev) (°) roughness, Ra (µ) force, Fc (N)

1 8 240 0.18 -5 1.68 395.98
2 9 375 0.18 -5 1.40 372.24
3 12 240 0.28 -5 3.18 550.14
4 15 375 0.28 -5 2.95 525.85
5 13 240 0.18 0 1.20 372.83
6 3 375 0.18 0 1.42 366.48
7 11 240 0.28 0 3.80 559.22
8 2 375 0.28 0 3.25 553.50
9 14 240 0.23 -3 2.14 443.10
10 16 375 0.23 -3 2.08 432.27
11 6 300 0.18 -3 1.14 351.14
12 7 300 0.28 -3 2.99 540.77
13 1 300 0.23 -5 2.17 440.92
14 4 300 0.23 0 2.32 465.40
15 10 300 0.23 -3 1.76 436.10
16 5 300 0.23 -3 1.74 428.88

Factor
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Design-Expert version 6 was used for the design of the experiment and subsequent analysis of the 
results.  

A full-second order regression model was fitted to each of the responses.  The ANOVA tables for 
the reduced models (using only statistically significant terms at the 5% level) for Ra and Fc were 
shown in Tables 5 and 6 of the paper, respectively.  These tables are reproduced here as Tables 
8.22 and 8.23, respectively. 

Table 8.22: Resulting ANOVA table (partial sum of squares) for reduced quadratic model 
(response: surface roughness, Ra). Table 5 of Noordin et al (2004). 
 

 
 
Table 8.23: Resulting ANOVA table (partial sum of squares) for reduced quadratic model 
(response: tangential force, Fc). Table 6 of Noordin et al (2004). 
 

 

Source Sum of Squares df Mean Square F-value p-value Remarks
Model 9.47 4 2.37 62.07 < 0.0001 significant
B 8.82 1 8.82 231.11 < 0.0001
C 0.037 1 0.037 0.9755 0.3445
C² 0.45 1 0.45 11.85 0.0055
BC 0.24 1 0.24 6.22 0.0298
Residual 0.42 11 0.038
Lack of Fit 0.42 10 0.042 209.7 0.0537 not significant
Pure Error 0.0002 1 0.0002
Cor Total 9.89 15

S.D. 0.20 R² 0.9576
Mean 2.20 Adjusted R² 0.9421
C.V. % 8.87 Predicted R² 0.8976
PRESS 1.01 Adeq Precision 22.35

Source Sum of Squares df Mean Square F-value p-value
Model 7.86E+04 5 1.57E+04 168.78 < 0.0001 significant
A 482.40 1 482.4 5.18 0.0462
B 7.62E+04 1 7.62E+04 817.91 < 0.0001
C 104.33 1 104.33 1.12 0.3149
C² 1668.17 1 1668.17 17.9 0.0017
BC 485.13 1 485.13 5.21 0.0457
Residual 931.9 10 93.19
Lack of Fit 905.84 9 100.65 3.86 0.3769 not significant
Pure Error 26.06 1 26.06
Cor Total 79575.63 15

S.D. 9.65 R² 0.9883
Mean 452.18 Adjusted R² 0.9824
C.V. % 2.13 Predicted R² 0.9714
PRESS 2279 Adeq Precision 35.91
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For Ra, from Table 8.22, only terms B, C, BC, and C2 were statistically significant at the 5% level. 
Using these terms, the regression equations for the surface roughness, Ra, in terms of coded and 
actual factors were given in Equations 1 and 3 of the paper, respectively. They are: 
 
Coded factors: 
 
Ra = 1.97 + 0.94 B + 0.06 C2 + 0.17 BC 
 
Actual factors: 
 
Ra = -2.714 + 22.228 feed + 2.88 x 10-4 SCEA + 0.0583 SCEA2 + 1.372 feed x SCEA 
 
The model for Ra has an adjusted R2 of 0.9421 and predicted R2 of 0.8976.  
 
For Fc, from Table 8.23, the statistically significant terms were A, B, C, C2 and BC.  Although C 
was not statistically significant at the 5% level, it was included because BC and C2 were in the 
model. The regression models for the tangential force, Fc, in terms of coded and actual factors, 
were given in Equations 2 and 4 of the paper, respectively. They are: 
 
Coded factors: 
 
Fc = 437.96 – 6.93 A + 87.39 B + 3.23 C + 22.15 C2 + 7.76 BC 
 
Actual factors: 
 
Fc = 57.237 – 0.103 cutting speed + 1902.95 feed + 4.737 SCEA + 3.543 SCEA2  
        + 62.05 feed x SCEA 
 
The model for Fc has an adjusted R2 of 0.9824 and predicted R2 of 0.9714.  
 
To validate the models, the authors completed another six confirmation runs using different 
combinations of the three factors. The experimental and model results were compared in Table 7 
of the paper and are reproduced here as Table 8.24.   
 
Table 8.24: Confirmation experiments. Table 7 of Noordin et al (2004). 
 

 
The authors concluded that the proposed models provided reasonably accurate predictions when 
compared to the experimental results. 

No. SCEA Feed Cutting speed
Actual Ra Predicted Ra Residual Error (%) Actual Fc Predicted Fc Residual Error (%)

1 -3 0.18 300 1.13 1.07 0.06 5.31 356.6 353.13 3.47 0.97
2 -3 0.23 375 2.06 1.98 0.08 3.88 440.78 431.26 9.52 2.16
3 -5 0.28 375 2.98 3.04 -0.06 -2.01 528.21 529.57 -1.37 -0.26
4 0 0.28 300 3.46 3.51 -0.05 -1.45 569.37 559.25 10.12 1.78
5 -3 0.18 375 1.16 1.07 0.09 7.76 343.56 345.42 -1.87 -0.54
6 -5 0.28 300 2.91 3.04 -0.13 -4.47 545.81 537.28 8.53 1.56

Surface roughness Tangential force
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Case Study #8.7 

Qian, Fuping and Mingyao Zhang (2005): Study of the natural vortex length of a cyclone with 
response surface methodology. Computers and Chemical Engineering, 29, pp. 2155-2162. 

This study investigated the natural vortex length, an important parameter of a cyclone, as a function 
of various geometries of a cyclone using response surface methodology. The natural vortex length 
of cyclones were obtained by numerical simulations using a commercial computational fluid 
dynamics (CFD) code, Fluent 6.1. A face-centered central composite design (FCD) was used to 
obtain the run combinations to fit a second-order regression model to the natural vortex lengths.  
Five factors, all in dimensionless form, were used in the experiment.  The theory behind cyclones 
and how the dimensionless terms were derived were given in the paper. The factors and levels 
used in the FCD were shown in Table 1 of the paper and are reproduced here as Table 8.25. 

Table 8.25:  Low and high level settings of the factors used in the response surface model 
(Hoekstra, 2000). Table 1 of Qian et al (2005). 
 

 

In Table 8.25, De is the diameter of the cyclone vortex finder, D is the diameter of the cyclone 
body, a is the height of the cyclone inlet, b is the width of the cyclone inlet, h is the length of the 
cyclone cylinder, S is the deepness of the vortex finder insertion, and Re is the well-known 
dimensionless Reynold’s number.  All these terms were described in a schematic drawing of the 
cyclone in the paper.  Dividing by D, all factors involving length become dimensionless.  The 
response was the natural vortex length which was also expressed in dimensionless form as l/D.  

Minitab 14 software was used for designing and analysing the data. The FCD had 43 runs in total 
which consisted of 32 full-factorial points, 10 axial points, and one center point since this was a 
computer-based experiment with no random errors. The experimental design and results were 
shown in Table 2 of the paper and are reproduced here as Table 8.26.  

The authors fitted a full second-order regression model to the dimensionless vortex length (l/D) 
data and the breakdown of the analysis of variance in terms of linear, squared, and interaction 
terms was shown in Table 3 of the paper is shown here as Table 8.27. The estimated regression 
coefficients and test statistics for the coded factors were shown in Table 4 of the paper. The 
coefficients in terms of actual factors (uncoded units) were also shown in Table 5 of the paper.  
These tables are reproduced as Tables 8.28 and 8.29, respectively. 

 

 
 

Factor xi XiL XiH

De/D X1 0.30 0.70
a/D X2 0.30 0.80
b/D X3 0.15 0.35
(h-S)/D X4 0.50 2.50
ln Re X5 10.2 12.9
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Table 8.26: Central composite design of Y = l/D.  Table 2 of Qian et al (2005). 
 

 
 

 

No. X1 X2 X3 X4 X5 Y
1 0.3 0.3 0.15 0.5 10.20 5.000
2 0.7 0.3 0.15 0.5 10.20 4.010
3 0.3 0.8 0.15 0.5 10.20 4.300
4 0.7 0.8 0.15 0.5 10.20 2.950
5 0.3 0.3 0.35 0.5 10.20 4.200
6 0.7 0.3 0.35 0.5 10.20 3.850
7 0.3 0.8 0.35 0.5 10.20 3.500
8 0.7 0.8 0.35 0.5 10.20 3.000
9 0.3 0.3 0.15 2.5 10.20 4.750
10 0.7 0.3 0.15 2.5 10.20 4.500
11 0.3 0.8 0.15 2.5 10.20 4.550
12 0.7 0.8 0.15 2.5 10.20 4.300
13 0.3 0.3 0.35 2.5 10.20 3.950
14 0.7 0.3 0.35 2.5 10.20 3.750
15 0.3 0.8 0.35 2.5 10.20 4.000
16 0.7 0.8 0.35 2.5 10.20 3.800
17 0.3 0.3 0.15 0.5 12.90 5.675
18 0.7 0.3 0.15 0.5 12.90 4.950
19 0.3 0.8 0.15 0.5 12.90 4.950
20 0.7 0.8 0.15 0.5 12.90 4.650
21 0.3 0.3 0.35 0.5 12.90 5.500
22 0.7 0.3 0.35 0.5 12.90 5.300
23 0.3 0.8 0.35 0.5 12.90 4.750
24 0.7 0.8 0.35 0.5 12.90 4.400
25 0.3 0.3 0.15 2.5 12.90 5.600
26 0.7 0.3 0.15 2.5 12.90 5.300
27 0.3 0.8 0.15 2.5 12.90 5.250
28 0.7 0.8 0.15 2.5 12.90 4.500
29 0.3 0.3 0.35 2.5 12.90 5.300
30 0.7 0.3 0.35 2.5 12.90 4.925
31 0.3 0.8 0.35 2.5 12.90 4.850
32 0.7 0.8 0.35 2.5 12.90 4.695
33 0.5 0.55 0.25 1.5 11.55 5.240
34 0.3 0.55 0.25 1.5 11.55 5.150
35 0.7 0.55 0.25 1.5 11.55 4.850
36 0.5 0.3 0.25 1.5 11.55 5.300
37 0.5 0.8 0.25 1.5 11.55 5.100
38 0.5 0.55 0.15 1.5 11.55 5.200
39 0.5 0.55 0.35 1.5 11.55 4.700
40 0.5 0.55 0.25 0.5 11.55 5.250
41 0.5 0.55 0.25 2.5 11.55 5.200
42 0.5 0.55 0.25 1.5 10.20 4.750
43 0.5 0.55 0.25 1.5 12.90 5.650
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Table 8.27: Analysis of variance for l/D. Table 3 of Qian et al (2005). 
 

 
 
 
8.28: Estimated regression coefficients for l/D (coded factors). Table 4 of Qian et al (2005). 
 

 
 
 
 
 
 
 

Source d.f. Seq SS Adj SS Adj MS F-ratio P-value
Regression 20 20.8458 20.8458 1.04229 43.22 0.000
   Linear 5 13.6016 13.6016 2.72032 112.8 0.000
   Square 5 5.7557 5.7557 1.15114 47.73 0.000
   Interaction 10 1.4884 1.4884 0.148844 6.17 0.000

Residual error 22 0.7958 0.7958 0.0362
Total 42 21.6416

Term Coefficient S.E. coeff T-ratio P-value
Constant 5.24721 0.03628 144.628 0.000
De/D -0.22191 0.02663 -8.332 0.000
a/D -0.24456 0.02663 -9.183 0.000
b/D -0.17544 0.02663 -6.588 0.000
(h-S)/D 0.08779 0.02663 3.297 0.002
ln Re 0.50250 0.02663 18.868 0.000
De/D x De/D -0.25803 0.09866 -2.615 0.013
a/D x a/D -0.05803 0.09866 -0.588 0.560
b/D x b/D -0.30803 0.09866 -3.120 0.004
(h-S)/D x (h-S)/D -0.03303 0.09866 -0.335 0.740
ln Re x ln Re -0.05803 0.09866 -0.588 0.560
De/D x a/D -0.01453 0.02745 -0.529 0.600
De/D x b/D 0.08078 0.02745 2.943 0.006
De/D x (h-S)/D 0.07141 0.02745 2.601 0.014
De/D x ln Re 0.02922 0.02745 1.064 0.295
a/D x b/D 0.01734 0.02745 0.632 0.532
a/D x (h-S)/D 0.12047 0.02745 4.388 0.000
a/D x ln Re -0.02797 0.02745 -1.019 0.316
b/D x (h-S)/D -0.04672 0.02745 -1.702 0.098
b/D x ln Re 0.09859 0.02745 3.591 0.001
(h-S)/S x ln Re -0.07953 0.02745 -2.897 0.007

S = 0.1553, R-sq = 96.3%, T-sq (Adj) = 94.1%
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The second-order regression model using the coefficients of Table 8.29 was given as Equation 6 
of the paper.  This equation is: 
 

𝑌𝑌 =
𝑙𝑙
𝐷𝐷

= −3.59538 + 2.70570 𝑋𝑋1 + 0.249231 𝑋𝑋2 + 3.51131 𝑋𝑋3 + 0.540555 𝑋𝑋4
+ 1.00495 𝑋𝑋5 − 6.45064 𝑋𝑋12 − 0.928410 𝑋𝑋22 − 30.8026 𝑋𝑋32 − 0.0330256 𝑋𝑋42
− 0.0318385 𝑋𝑋52 − 0.290625 𝑋𝑋1𝑋𝑋2 + 4.03906 𝑋𝑋1𝑋𝑋3 + 0.357031 𝑋𝑋1𝑋𝑋4
+ 0.108218 𝑋𝑋1𝑋𝑋5 + 0.693750 𝑋𝑋2𝑋𝑋3 0.481875 𝑋𝑋2𝑋𝑋4 − 0.082870 𝑋𝑋2𝑋𝑋5
− 0.0467188 𝑋𝑋3𝑋𝑋4 + 0.730324 𝑋𝑋3𝑋𝑋5 − 0.0589120 𝑋𝑋4𝑋𝑋5 

 
 
Table 8.29: Estimated regression coefficients for l/D using data in uncoded units. Table 5 of Qian 
et al (2005). 
 

Term Coefficient 
Constant -3.595380 
De/D 2.705700 
a/D 0.249231 
b/D 3.511310 
(h-S)/D 0.540555 
ln Re 1.004950 
De/D x De/D -6.450640 
a/D x a/D -0.928410 
b/D x b/D -30.802600 
(h-S)/D x (h-S)/D -0.033026 
ln Re x ln Re -0.031839 
De/D x a/D -0.290625 
De/D x b/D 4.039060 
De/D x (h-S)/D 0.357031 
De/D x ln Re 0.108218 
a/D x b/D 0.693750 
a/D x (h-S)/D 0.481875 
a/D x ln Re -0.082870 
b/D x (h-S)/D -0.467188 
b/D x ln Re 0.730324 
(h-S)/S x ln Re -0.058912 

 
Attempts to reproduce the exact results obtained in the above tables were not successful using 
Minitab 18 or Design-Expert 12. The goodness-of-fit obtained using the given data is lower but 
the statistically significant terms in the quadratic model are similar to those reported by the authors. 
It seems likely that the analysis by the authors was done using a different set of data than those in 
Table 8.26. 
 
Even if the results were correct, it was not clear why the authors included all terms in the model. 
Many of the terms were not statistically significant at the 5% level.  
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Case Study #8.8 

Sin, H. N., S. Yusof, N. Sheikh Abdul Hamid, and R. Abd. Rahman (2006): Optimization of 
enzymatic clarification of sapodilla juice using response surface methodology. Journal of Food 
Engineering, 73, pp. 313-319. 

This study investigated the effect of three factors – incubation time, temperature, and enzyme 
concentration on the enzymatic clarification of sapodilla juice using response surface 
methodology. Sapodilla, a tropical fruit normally eaten fresh, can be made into a juice but requires 
the use of enzymes to clarify the juice. The optimal conditions for producing clarified juice was 
the primary objective of the study.  

A face-centered central composite design (FCD) with five center points was used. The factors and 
levels used in the experiment are summarized in Table 8.30.  The materials and methods used in 
the experiment, including the preparation of the fruit, the extraction of the juice, and the treatment 
by enzymes, were explained in detail in the paper.  

Table 8.30: Factors and levels used in the experiment.  
 

 

The authors considered four responses as measures of quality of the extracted juice after treatment 
by the various combinations of the factors. They were the turbidity (NTU), clarity (abs), viscosity 
(cps), and the colour, based on L values.  

The FCD had a total of 19 runs consisting of eight factorial points, six axial points, and five center 
points.  The experiment was run in random order. The 19 run combinations in coded and actual 
factors, and the results for the four responses, were shown in Table 1 of the paper and are 
reproduced here as Table 8.31. ECHIP Software Version 6 (Echip Inc., Hockessin, Delaware, 
USA) was used for the design and analysis of the experiment.  

Note that in Table 1 of the paper, all five center points were given the same treatment number of 
15.  However, it is more conventional to give each treatment combination its own run or treatment 
number. This was done in Table 8.31. Hence the five center points are labelled as treatment 15, 
16, 17, 18, and 19. 

The authors fitted a full second-order model (linear, two-factor interaction, and squared terms) to 
each of the responses.  The estimated coefficients, different level of statistical significance, and 
goodness-of-fit statistics were shown in Table 2 of the paper and are reproduced here as Table 
8.32. The coefficients were estimated using actual factors.  
 
 
 

Factors Units Low (-1) Center (0) High (+1)
Time, X1 min 30 75 120
Temperature, X2 °C 30 40 50
Enzyme concentration, X3 % 0.03 0.065 0.10

Levels 
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Table 8.31: Effects of incubation time, temperature and enzyme concentration on four dependent 
variables. Table 1 of Sin et al (2006). 
 

 
 
 
8.32: Regression coefficients and R2 value for four dependent variables for enzymatic clarified 
sapodilla juices. Table 2 of Sin et al (2006). 
 

 

Turbidity Clarity Viscosity L
Treatment X1 X2 X3 Time (min) Temp. (°C) Enzyme conc. (%) (NTU) (abs) (cps) value

15 0 0 0 75 40 0.065 16.60 0.03 1.39 54.55
1 -1 0 0 30 40 0.065 34.40 0.03 1.40 52.15
9 1 -1 1 120 30 0.1 22.30 0.03 1.25 53.77

16 0 0 0 75 40 0.065 16.20 0.02 1.35 54.01
10 -1 -1 1 30 30 0.1 19.00 0.02 1.39 53.17
7 1 1 1 120 50 0.1 18.80 0.01 1.34 54.89

17 0 0 0 75 40 0.065 17.00 0.03 1.40 54.21
3 0 -1 0 75 30 0.065 18.10 0.03 1.42 54.01
8 -1 1 1 30 50 0.1 29.90 0.03 1.34 54.00

18 0 0 0 75 40 0.065 15.00 0.02 1.38 54.42
12 -1 1 -1 30 50 0.03 65.30 0.07 1.40 49.36
5 0 0 -1 75 40 0.03 49.70 0.05 1.45 51.73

19 0 0 0 75 40 0.065 14.60 0.03 1.40 54.38
11 1 1 -1 120 50 0.03 43.20 0.05 1.39 51.88
13 1 -1 -1 120 30 0.03 52.10 0.05 1.43 51.59
2 1 0 0 120 40 0.065 21.10 0.02 1.28 54.11
6 0 0 1 75 40 0.1 12.20 0.02 1.25 54.25
4 0 1 0 75 50 0.065 14.80 0.02 1.41 54.10

14 -1 -1 -1 30 30 0.03 68.90 0.08 1.46 48.10

Indepdent variables Dependent variables
Uncoded variablesCoded variables

Regression coefficient Turbidity (NTU) Clarity (abs) Viscosity (cps) L value
b0 16.449484 0.023128 1.377732 54.223608
b1 -0.133333* -0.000124** -0.000667*** 0.021022*
b2 -0.084000 -0.000315 -0.000700 0.035900***
b3 505.714303* -0.534857* -1.600000* 49.771423*
b1

2 0.005229* 0.000002 -0.000015 -0.000484**
b2

2 -0.007113 0.000031 0.000451 -0.000556
b3

2 11256.049479* 10.132549** -16.242336 -914.790594*
b12 -0.005472** -0.000004 0.000044 -0.000189
b13 2.468254* 0.002548*** -0.007937 -0.358730**
b23 7.107141** 0.000393 0.050000 0.142856
R2 0.966 0.964 0.829 0.978
p 0.0000 0.0000 0.0138 0.0000
Subscripts: 1 = incubation time; 2 = temperature, 3 = enzyme concentration.
*    Significant at 0.0001 level.
**  Significant at 0.01 level.
***Significant at 0.05 level.
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The full ANOVA results were not given in the paper. In addition, the adjusted and predicted R2 
values were not reported.  

Reanalyses of data using Minitab 18 and Design-Expert 12 produced identical R2 values as 
reported in the paper and the estimated coefficients were also identical for only the squared and 
two-factor interaction terms but the linear and intercept terms were quite different.  Furthermore, 
for viscosity, the predicted R2 = -0.5642 which indicates that the overall mean may be a better 
predictor than the second-order model.  

For the optimization phase of the study, it was not clear whether the full second-order models were 
used or only the statistically significant terms were used in the models. The optimum combination 
of factors to give the lowest turbidity, absorbance value (clarity), and viscosity, while colour (L 
value) is as high as possible were: incubation time of 120 mins, temperature of 40°C, and 0.1% 
enzyme concentration.  The optimum combination was obtained by a graphical approach.  

 

Case Study #8.9 

Tabaraki, Reza and Ashraf Nateghi (2011): Optimization of ultrasonic-assisted extraction of 
natural antioxidants from rice bran using response surface methodology. Ultrasonic 
Sonochemistry, 18, pp. 1279-1286. 

This study used response surface methodology to optimize the conditions for the extraction of 
polyphenols and antioxidants from rice bran with ethanol as a food grade solvent. An ultrasonic-
assisted extraction (UAE) method was used. Three factors – solvent percentage, temperature, and 
time were considered and four responses – total phenolic content (TPC), ferric reducing 
antioxidant power (FRAP), scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 
and the extraction yields were measured.  The materials and methods used in the experiment were 
described in the paper. The factors and levels used were shown in Table 1 of the paper and are 
reproduced here in Table 8.33. 

Table 8.33: Coded and uncoded levels of the independent variables. Table 1 of Tabaraki et al 
(2011). 
 

 
 

The experimental design was based on a face-centered central composite design (FCD) with a total 
of 16 runs consisting eight factorial points, six axial points, and two center points. Minitab 15 was 
used for experimental design and subsequent statistical analysis and modelling. The experimental 
design and responses measured were shown in Table 2 of the paper and are reproduced here as 
Table 8.34.  

Independent variables Coded units
-1 0 1

Ethanol concentration, E (%) X1 50 70 90
Temperature, T (°C) X2 40 50 60
Time, t (min) X3 15 30 45

Coded levels
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Table 8.34: Central composite design of three variables with their observed responses. Table 2 of 
Tabaraki et al (2011). 
 

 
 
A full second-order regression model consisting of linear, quadratic, and two-factor interaction 
terms was fitted to each of the responses. The estimated coefficients and their statistical 
significance were shown in Table 3 of the paper and are reproduced here as Table 8.35. 
 
Table 8.35: Regression coefficients of predicted polynomial models for the investigated responses 
from rice bran extracts. Table 3 of Tabaraki et al (2011). 
 

 
n.s., Not significant (p>0.05). * Significant at p ≤ 0.05, ** Significant at p ≤ 0.01, *** Significant at p ≤ 0.001. 

TPC FRAP DPPH Yield
Exp No. X1 X2 X3 E% T (°C) t (min)  (mg/GA/g dw) (µmol Fe2+/g dw) (%) (%)

1 1 1 1 90 60 45 4.07 42.11 28.99 20.2
2 1 -1 1 90 40 45 2.37 31.74 16.88 18.4
3 -1 -1 -1 50 40 15 3.51 36.61 25.09 11.0
4 0 -1 0 70 40 30 4.72 46.33 34.81 15.6
5 0 0 0 70 50 30 6.29 56.76 55.61 17.5
6 -1 1 1 50 60 45 4.44 44.10 29.60 17.8
7 1 -1 -1 90 40 15 2.94 33.98 17.41 13.8
8 0 0 -1 70 50 15 5.07 50.98 43.66 16.2
9 0 0 1 70 50 45 5.21 51.70 45.42 18.2

10 -1 1 -1 50 60 15 3.78 39.42 27.09 15.1
11 -1 0 0 50 50 30 4.52 46.36 33.79 14.6
12 1 1 -1 90 60 15 3.66 38.10 26.20 19.0
13 1 0 0 90 50 30 3.24 35.68 22.71 18.6
14 -1 -1 1 50 40 45 4.79 47.36 36.04 14.0
15 0 0 0 70 50 30 6.35 57.23 49.25 17.4
16 0 1 0 70 60 30 5.11 48.20 40.29 18.8

Coefficient
TPC FRAP DPPH Yield

β0 -19.11 -156.45* 265.65* -23.54*
β1 0.43* 3.17 4.66** 0.40*
β2 0.32 3.63 5.66 0.54
β3 0.11 0.52 0.51 0.30*
β11 -0.36 x 10-2** -0.26 x 10-1** -0.39 x 10-1** -0.21 x 10-2**

β22 -0.41 x 10-2 -0.24 -0.64 x 10-1 -0.22 x 10-2

β33 -0.08 x 10-2 0.01 x 10-2 0.03 x 10-1 -0.10 x 10-2

β12 0.16 x 10-2 0.09 x 10-1 0.16 x 10-1 -0.06 x 10-2

β13 -0.09 x 10-2 -0.06 x 10-1 -0.05 x 10-1 0.01 x 10-3

β23 0.03 x 10-2 0.01 x 10-1 -0.04 x 10-1 -0.31 x 10-2

Model * * * ***
Linear * * * *
Quadratic ** ** ** *
Cross-product ns ns ns ns
Lack of fit ns ns ns ns
R2 0.89 0.90 0.91 0.98

Response
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Using the estimated coefficients Table 8.35, the following regression models (in actual factors) for 
TPC, FRAP, DPPH and Yield (Equations 3, 4, 5, and 6, respectively) were proposed for each of 
the responses, as shown: 
 
TPH (mg GA/g dw) = -19.11 + 0.43E + 0.32T + 0.11t – 0.36 x 10-2 E2 – 0.41 x 10-2 T2  
                                    – 0.08 x 10-2 t2 + 0.16 x 10-2 E.T – 0.09 x 10-2 E.t + 0.3 x 10-2 T.t 
 
FRAP (µmol Fe2+ /g dw) = -156.45 + 3.17E + 3.63T + 0.52t – 0.03 E2 – 0.04 T2 – 0.1 x 10-2 t2  
                                    + 0.09 x 10-1 E.T – 0.06 x 10-1 E.t + 0.1 x 10-2 T.t 
 
DPPH (%) = -265.65 – 4.66E + 5.66T + 0.51t – 0.04E2 – 0.06T2 + 0.03 x 10-1 t2 – 0.04 x 10-1 T.t 
                      + 0.06 x 10-1 E.T – 0.05 x 10-1 E.t 
 
Yield (%) = -23.54 – 0.40E + 0.54T + 0.30t – 0.21 x 10-2E2 – 0.22 x 10-2 T2 – 0.01 x 10-1 t2  
                    – 0.31 x 10-2 T.t – 0.06 x 10-2 E.T + 0.01 x 10-2 E.t 
 
From Table 8.35, it can be seen that many of the estimated coefficients were not statistically 
significant at the 5% level yet they were included in the regression models. The full ANOVA 
results and full set of goodness-of-fit statistics were not given in the paper.  On reanalysis of the 
data, the predicted R2 values are actually quite low. The predicted R2 for TPC, FRAP, DPPH, and 
Yield are 0.227, 0.146, 0.502, and 0.625, respectively.  
 
The optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 
51-54 °C, and 40-45 min. It was not mentioned how these values were obtained. The authors then 
compared the predicted values with actual values at the optimal condition for each of the responses. 
These comparisons were shown in Table 4 of the paper and are reproduced here as Table 8.36.   
 
8.36: Estimated optimum conditions, predicted and experimental values of responses under these 
conditions. Table 4 of Tabaraki et al (2011). 
 

 
The condition for the simultaneous optimization of all four responses was not given in the paper. 

 

 

 

 

Response variables
Ethanol (%) Temp (°C) Time (min) Predicted Actual

TPC (mg GA/g dw) 67 54 40 6.05 6.21
FRAP (µmol Fe2+/g dw) 65 51 45 54.14 54.94
DPPH (%) 67 51 45 52.83 52.65
Yield (%) 87 60 28 19.93 19.83

Optimum UAE conditions Maximum values
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Case Study #8.10 

Wee Shin Ling, Tye Ching Thian, and Subhash Bhatia (2010): Process optimization studies for 
the dehydration of alcohol-water system by inorganic membrane based pervaporation 
separation using design of experiments (DOE). Separation and Purification Technology, 71, pp. 
192-199. 

This study investigated the effects of feed temperature, feed concentration, permeate pressure, and 
feed flow rate on membrane separation performance using response surface methodology based 
on a face-centered central composite design. A commercial ceramic membrane from Pervatech 
BV was used to study the dehydration of alcohol-water mixture by pervaporation.  Isopropanol-
water and ethanol-water mixtures were used in this study. Pervaporation apparently has many 
advantages over conventional membrane separation technologies.  The theory behind 
pervaporation and the experimental setup were described in the paper.  

The four factors used in the experiment and their levels were shown in Table 1 of the paper and 
are reproduced here as Table 8.37.  

Table 8.37: Experimental independent variables. Table 1 of Wee et al (2010). 
 

 
 
Two responses were measured – permeation flux (kg/m2 h) and selectivity. Their definitions and 
calculations were given in the paper.  
 
Design-Expert 6.06 was used for the design and analysis of the experiment. The experimental 
design used was a face-centered central composite design (FCD) with a total of 30 runs consisting 
a full 24 factorial of 16 runs, eight axial points, and six center points.  The authors added three 
additional replicated runs but these were not used in the statistical analysis. The experimental 
design and the measured responses were shown in Table 2 of the paper and are reproduced here as 
Table 8.38.  The experimental runs were done in random order. 
 
Full second-order regression models (consisting of linear, quadratic, and two-factor interaction 
terms) were fitted to each of the responses.  The ANOVA results for permeation flux and 
selectivity were shown in Tables 3 and 4 of the paper, respectively.  These tables are reproduced 
here as Tables 8.39 and 8.40, respectively.  
 
 
 
 
 

Variables Factor code Unit
-1 0 +1

Temperature A °C 60 75 90
Isopropanol feed concentration B kg/kg 0.80 0.88 0.96
Permeate pressure C kPA 1 3 5
Feed flow rate D dm3/h 40 70 90

Level and range (coded)
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Table 8.38: Experiment runs and responses for the pervaporation of isopropanol aqueous 
solutions. Table 2 of Wee et al (2010). 
 

 
 

 

 

 

Run Response 1 Response 2
A: temperature (°C) B: isopropanol feed C: permeate D: Feed flow Permeation flux Selectivity

concentration (kg/kg) pressure (kPa) rate (dm3/h) (kg/m2 h)
1 90 0.88 3 70 6.61 177
2 90 0.80 1 100 9.55 145
3 60 0.96 5 40 0.62 607
4 60 0.96 1 40 0.44 1476
5 90 0.96 5 100 1.91 243
6 60 0.80 5 100 2.99 145
7 60 0.80 1 40 2.69 136
8 60 0.80 1 100 2.72 294
9 60 0.80 5 40 2.33 126
10 75 0.88 3 70 4.44 540
11 75 0.88 3 100 4.7 412
12 75 0.88 3 70 4.75 362
13 90 0.96 5 40 1.76 216
14 75 0.80 3 70 4.21 503
15 90 0.80 5 100 7.89 192
16 75 0.88 3 70 3.88 557
17 90 0.96 1 100 1.74 951
18 75 0.88 5 70 5.14 362
19 75 0.88 3 70 3.95 396
20 75 0.88 1 70 4.64 698
21 75 0.88 3 40 3.94 497
22 90 0.80 5 40 5.67 147
23 90 0.96 1 40 1.8 990
24 60 0.88 3 70 2.95 131
25 90 0.80 1 40 6.19 171
26 75 0.96 3 70 1.12 835
27 60 0.96 5 100 0.95 551
28 60 0.96 1 100 0.83 1346
29 75 0.88 3 70 4.7 393
30 75 0.88 3 70 3.8 296

Repeated runs
31 60 0.88 3 70 3.21 130
32 60 0.88 3 70 3.15 138
33 60 0.88 3 70 3.42 129

Mean 3.27 132
Standard deviation 0.12 4.08

Factor



167 
 

Table 8.39: Analysis of variance (ANOVA) for 24 full center composite design (CCD) for 
permeation flux. Table 3 of Wee et al (2010). 
 

 
 
 
Table 8.40: Analysis of variance (ANOVA) for 24 full center composite design (CCD) for 
selectivity. Table 4 of Wee et al (2010). 
 

 

Source Sum of Squares df Mean Square F-value p-value
Model 134.77 14 9.63 33.12 < 0.0001 significant
A-A 39.31 1 39.31 135.24 < 0.0001
B-B 60.76 1 60.76 209.03 < 0.0001
C-C 0.10 1 0.10 0.34 0.5667
D-D 3.41 1 3.41 11.75 0.0037
A² 0.25 1 0.25 0.87 0.3665
B² 8.42 1 8.42 28.98 < 0.0001
C² 0.46 1 0.46 1.59 0.227
D² 0.06 1 0.06 0.20 0.6647
AB 12.60 1 12.60 43.36 < 0.0001
AC 0.32 1 0.32 1.10 0.3112
AD 1.13 1 1.13 3.90 0.0669
BC 0.46 1 0.46 1.57 0.2297
BD 1.86 1 1.86 6.41 0.023
CD 0.01 1 0.01 0.03 0.8697
Residual 4.36 15 0.29
Lack of Fit 3.44 10 0.34 1.87 0.2529 not significant
Pure Error 0.92 5 0.18
Cor Total 139.13 29

Source Sum of Squares df Mean Square F-value p-value
Model 3.49 x 106 14 2.49 x 105 26.50 < 0.0001 significant
A-A 1.39 x 105 1 1.39 x 105 14.73 0.0016
B-B 1.59 x 106 1 1.59 x 106 169.32 < 0.0001
C-C 7.27 x 105 1 7.27 x 105 77.26 < 0.0001
D-D 420.50 1 420.50 0.04 0.8354
A² 2.10 x 105 1 2.1 x 105 22.30 0.0003
B² 1.38 x 105 1 1.38 x 105 14.61 0.0017
C² 21646.01 1 21646.01 2.30 0.1502
D² 655.30 1 655.30 0.07 0.7955
AB 1.47 x 105 1 1.47 x 105 15.63 0.0013
AC 8281.00 1 8281.00 0.88 0.3631
AD 16.00 1 16.000 0.00 0.9677
BC 5.66 x 105 1 5.66 x 105 60.16 < 0.0001
BD 9702.25 1 9702.25 1.03 0.3261
CD 324.00 1 324.00 0.03 0.8553
Residual 1.41 x 105 15 9412.32
Lack of Fit 88066.82 10 8806.68 0.83 0.6269 not significant
Pure Error 53118.00 5 10623.60
Cor Total 3.63 x 106 29
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The authors then proposed the following prediction equations for the permeation flux and 
selectivity in terms of coded factors (Equations 4 and 5, respectively):  

Permeation flux = 4.36+ 1.48 A -1.84 B - 0.07 C + 0.44 D + 0.31193 A2 - 1.80 B2 + 0.42 C2  
                             - 0.15 D2 - 0.89 AB - 0.14 AC + 0.27 AD + 0.17 BC - 0.34 BD - 0.02 CD  
 

Selectivity = 431.3 - 87.78 A + 297.56 B - 201 C - 4.83 D - 284.60 A2 + 230.40 B2 + 91.40 C2  

                      + 15.90 D2 - 95.88 AB + 22.75 AC + AC -188.13 BC - 24.63 BD + 4.5 CD  

In the paper, only the R2 values were given for the full model.  For permeation flux, the R2 was 
0.9687, and for selectivity, the R2 was 0.9611. Adjusted and predicted R2 values were not given. 
As can be seen from Tables 8.39 and 8.40, many of the regression coefficients were not statistically 
significant at the 5% level but were included in the prediction models. Model performance could 
be improved by using reduced quadratic models with only statistically significant terms.  

To obtain the optimal condition of the four factors, the authors used the numerical optimization 
tool available in Design-Expert 6.0.6 which is based on the desirability function approach. They 
considered three different sets of goals to obtain three optimal combination of the four factors. The 
full results were shown in Table 5 of the paper and are summarized here as Table 8.41.   

Table 8.41: Optimum condition for three different set of goals from DOE for the pervaporation of 
isopropanol aqueous solution. Summarized from Table 5 of Wee et al (2010). 

 

Additional experiments with isopropanol and ethanol aqueous solution were also carried out to 
check the accuracy of the optimum condition suggested by the software.  The experimental results 
were given in Table 6 of the paper.  The authors indicated that the error of the predicted results 
using the developed regression models were ±4% for permeation flux and ±5% for selectivity and 
concluded that the statistical analysis is reliable to optimize the pervaporation process. Other 
conclusions were given in the paper. 

 

No. Temperature (°C) Isopropanol feed Permeate pressure Feed flow rate Permeation Selectivity Desirability
concentration (kg/kg) (kPa) (dm3/h) flux (kg/m2 h)

Goal 1: maximize selectivity and permeation flux ≥ 2.5 kg/m2 h

1* 75 0.94 1.00 84.00 2.50 1191 0.8883

Goal 2: maximize permeation flux

1* 90 0.81 1.00 100.00 8.81 - 0.9188

Goal 3: maximize selectivity

1* 69 0.96 1.02 41.05 - 1491 1.0000
* selected as optimium point as suggested by the software.
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______________________________________________ 
9. COMBINATION DESIGNS 

 

This Chapter presents seven case studies of combination designs. These are designs that start with 
either a 2-level factorial or 2-level fractional factorial design, followed up with an RSM design. 
The RSM designs were either the rotatable CCD or face-centered CCD.  

 

Case Study #9.1 

Chen, X-C., Jian-Xin Bai, Jia-Ming Cao, Zhen-Jiang Li, Jian Xiong, Lei Zhang, Yuan Hong, and 
Han-Jie Ying (2009): Medium optimization for the production of cyclic adenosine 3’, 5’-
monophosphate by Microbacterium sp. no. 205 using response surface methodology. 
Bioresource Technology, 100, pp. 919-924. 

This study employed a 211-7 fractional factorial design followed by a rotatable central composite 
design to optimize the medium components that affect the production of cyclic adenosine 3’, 5’-
monophosphate (cAMP) with Microbacterium sp. no. 205.  The importance of cAMP was 
explained in detail by the authors. Eleven factors affecting cAMP production were investigated 
first to evaluate the main effects only. The factors and levels investigated are given in Table 1 of 
the paper and are reproduced here as Table 9.1 in a slightly modified form.  

Table 9.1:  Factors and levels tested in the experiment. Modified from Table 1 in Chen et al (2009). 

  Levels of factors 
Factor -1 0 1 
Glucose (X1, g/L) 40 50 60 
K2HPO4 (X2, g/L) 5 10 15 
KH2PO4 (X3, g/L) 5 10 15 
MgSO4 (X4, g/L) 5 10 15 
Urea (X5, g/L) 5 10 15 
Biotin (X6, g/L) 2 3 4 
CoCl2 (X7, mg/L) 5 10 15 
NaF (X8, g/L) 0.05 0.10 0.15 
Peptone (X9, g/L) 3 4 5 
Hypoxanthine (X10, g/L) 2 3 4 
Initial pH (X11) 7.0 7.5 8.0 

 

In Table 1 of the paper, the levels were listed in order of +1, 0, and -1.  In Table 9.1, they were 
listed from -1 to +1 which is more conventional. Design-Expert version 6.0 was used for the design 
and analysis of the experiments. The authors did not mention the defining relationship used for the 
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fractional factorial design but a good guess is that they used the default in Design-Expert. The 
design was a resolution III design. Four center points were added to the design to give a total of 
20 runs. 

The run combinations and responses obtained from the fractional factorial experiment were shown 
in Table 2 of the paper and are reproduced in Table 9.2. 

Table 9.2: Experimental design and results of the 211-7 fractional factorial design. Table 2 of Chen 
et al (2009). 
 

 

The authors fitted a first order model with only main effects and the results of the regression 
analysis were shown in Table 3 of the paper and are reproduced here as Table 9.3. The predicted 
values using only the main effect are also shown in Table 9.2.   

The authors then selected only the three statistically significant effects at the 5% level for the next 
optimization stage of the experiment. The effects selected were: K2HPO4 (X2), MgSO4 (X4), and 
NaF (X8).  There was no mention of any lack of fit test or checking for curvature in the paper. 
Upon reanalysis of the data, it seems that the coefficients, t-values, and corresponding p-values for 
X1 and X4 were incorrectly reported in the paper. The values have been interchanged. That is, the 
values for X4 belong to X1 and vice versa. This means that X1 should have been chosen and not 
X4. The correct factors should have been:  X1, X2, and X8.   

Std Order X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Observed Predicted
1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1.97 2.43
2 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 4.15 4.77
3 -1 1 -1 -1 1 1 -1 1 -1 -1 1 5.61 5.30
4 1 1 -1 -1 -1 1 1 -1 1 1 -1 3.32 3.16
5 -1 -1 1 -1 1 1 1 -1 -1 1 -1 3.59 4.01
6 1 -1 1 -1 -1 1 -1 1 1 -1 1 2.68 3.25
7 -1 1 1 -1 -1 -1 1 1 1 -1 -1 7.96 7.88
8 1 1 1 -1 1 -1 -1 -1 -1 1 1 1.83 1.91
9 -1 -1 -1 1 -1 1 1 1 -1 1 1 4.87 4.95
10 1 -1 -1 1 1 1 -1 -1 1 -1 -1 0.97 0.89
11 -1 1 -1 1 1 -1 1 -1 1 -1 1 3.28 3.85
12 1 1 -1 1 -1 -1 -1 1 -1 1 -1 4.10 4.52
13 -1 -1 1 1 1 -1 -1 1 1 1 -1 6.18 6.02
14 1 -1 1 1 -1 -1 1 -1 -1 -1 1 1.46 1.15
15 -1 1 1 1 -1 1 -1 -1 -1 -1 -1 2.72 3.34
16 1 1 1 1 1 1 1 1 1 1 1 4.63 5.09
17 0 0 0 0 0 0 0 0 0 0 0 4.69 3.91
18 0 0 0 0 0 0 0 0 0 0 0 4.70 3.91
19 0 0 0 0 0 0 0 0 0 0 0 4.72 3.91
20 0 0 0 0 0 0 0 0 0 0 0 4.73 3.91

cAMP (g/L)
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Table 9.3: Regression results of the fractional factorial design. Table 3 of Chen et al (2009). 
 
Factor Coefficient t-Value P-value 
Intercept 3.9080 22.0111 0.000000* 
X1 -0.1812 -0.9130 0.387887 
X2 0.4737 2.3866 0.044088* 
X3 0.1737 0.8753 0.406921 
X4 -0.8150 -4.1057 0.003411* 
X5 0.0725 0.3652 0.724405 
X6 -0.1587 -0.7997 0.446958 
X7 0.4500 2.2669 0.053141 
X8 1.3150 6.6245 0.000165* 
X9 0.1662 0.8375 0.426612 
X10 0.1037 0.5226 0.615371 
X11 -0.4162 -2.0969 0.069266 

R2 = 0.9084.  * Statistically significant at 95% confidence level 

For the optimization stage of the experiment, the authors performed a path of steepest ascent to 
determine the proper levels for the central composite design.  This was given in Table 4 of the 
paper.  The final levels used for the three chosen factors from the fractional factorial design were 
shown in Table 5 of the paper and are reproduced here in Table 9.4.   

Table 9.4:  Levels of the factors tested in the central composite design (modified from Table 5 of 
Chen et al, 2009). 

Factor Levels of factors 
  -1.68 -1 0 1 1.68 
K2HPO4 (A, g/L) 9.64 11 13 15 16.36 
MgSO4 (B, g/L) 0.64 2 4 6 7.36 
NaF (C, g/L) 0.032 0.1 0.2 0.3 0.368* 
 
      

In Table 5 of the paper, the axial point of factor C was incorrectly listed as 0.268.  

The central composite design with two center points has 16 runs.  The design and the experimental 
results were shown in Table 6 of the paper and are reproduced here in Table 9.5. A full second-
order model was then fitted to the data resulting in the following prediction equation:   

𝑌𝑌 = 8.44 − 0.15 𝐴𝐴 − 0.29 𝐵𝐵 − 0.17 𝐶𝐶 − 0.60 𝐴𝐴2 − 0.58 𝐵𝐵2 − 0.48 𝐶𝐶2 − 0.26 𝐴𝐴𝐴𝐴 + 0.20 𝐴𝐴𝐴𝐴
+ 0.035 𝐵𝐵𝐵𝐵 

The equation gave a R2 of 0.9556. The regression results were given in Table 8 of the paper and 
are given here as Table 9.6. The predicted values are also shown in Table 9.5.   
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Table 9.5: Experimental design and results of the central composite design. Table 6 of Chen et al 
(2009). 
 

        cAMP (g/L) 
Std Order A (K2HPO4) B (MgSO4) C (NaF) Observed Predicted 

1 -1 -1 -1 7.41 7.37 
2 1 -1 -1 6.61 6.56 
3 -1 1 -1 7.54 7.24 
4 1 1 -1 6.6 6.57 
5 -1 -1 1 7.32 7.19 
6 1 -1 1 7.05 7.18 
7 -1 1 1 6.15 6.02 
8 1 1 1 6.3 6.15 
9 -1.68 0 0 6.84 6.99 

10 1.68 0 0 6.43 6.49 
11 0 -1.68 0 7.35 7.29 
12 0 1.68 0 6.04 6.31 
13 0 0 -1.68 7.12 7.37 
14 0 0 1.68 6.84 6.8 
15 0 0 0 8.49 8.44 
16 0 0 0 8.43 8.44 

 

Table 9.6: Regression results of the Central composite design. Table 8 of Chen et al (2009). 

Factor Coefficient P-value 
Intercept 8.4400  
A -0.1500 0.0619 
B -0.2900 0.0040* 
C -0.1700 0.0391* 
A2 -0.6000 0.0003* 
B2 -0.5800 0.0003* 
C2 -0.4800 0.0009* 
AB -0.2600 0.0238* 
AC 0.2000 0.0541 
BC 0.0350 0.6941 

 

Notice that several of the statistically insignificant terms were included in the prediction equation 
by the authors.  It is also likely that the coefficients and associated p-values for AB and BC have 
been interchanged.  Hence AB should have a coefficient of 0.035 and is not statistically significant, 
while BC should have a coefficient of -0.26 and is statistically significant.  
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The authors then used the prediction equation to maximize cAMP. They found that with A = -0.11, 
B = -0.24, and C = -0.21, all coded units gave a cAMP value of about 8.50 g/L which was about a 
1.8 fold increase when compared to using the original medium.  

Despite the wrong choice of factors from the fractional factorial design and wrong coefficients 
used, the final results seem to be still better than without using design of experiment 
methodologies! 

 

Case Study #9.2 

Chua, Y-T, Abdul Rahman Mohamed, and Subhash Bhatia (2007): Process optimization of 
oxidative coupling of methane for ethylene production using response surface methodology. 
Journal of Chemical Technology and Biotechnology, 82, pp. 81-91. 

A combination of a half fractional factorial design with five factors followed up by a face-centered 
central composite design (FCD) with four factors was used to study the oxidative coupling of 
methane (OCM) over a Na-W-Mn/SiO2 catalyst. The importance of studying this particular 
process was explained in the paper. The goal of the study was to optimize the yield of C2+.  

In the first part of the study, the authors considered five process factors: temperature, gas hourly 
space velocity (GHSV), pre-treatment time, dilution ratio, and the methane-oxygen (CH4/O2) ratio. 
The factors, units, and levels used were given in Table 1 of the paper and are reproduced here as 
Table 9.7. 

Table 9.7: Factors and levels used in the experiment (after Table 1 of Chua et al, 2007). 
 
Factors Unit Factor code Low Level (-1) High level (+1) 
Temperature C A 750 850 
GHSV cm3/g/h B 18000 35000 
Pre-treatment time h C 0 2 
Dilution ratio  D 0.2 0.5 
CH4/O2 ratio   E 3 7 

 

Three responses were measured: methane conversion, selectivity of C2+ product, and 
ethylene/ethane ratio.  Experimental design and analyses were conducted using Design-Expert 
version 6.0.6.  A significance level of 5% was adopted for significance testing. 

To save on experimental runs, the authors chose a half fractional factorial (25-1) design as a 
screening design. They replicated 2 runs for reproducibility giving a total of 18 runs. The fractional 
factorial design and the corresponding responses obtained were shown in Table 2 of the paper and 
are reproduced here as Table 9.8. The authors did not indicate what defining relationship was used 
to obtain the half fraction. It is also not clear what the design of the half factorial resolution was.  
It is clear that it was not the default design in Design-Expert.  
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Table 9.8: Experimental matrix of 2(5-1) fractional factorial design. Table 2 of Chua et al (2007). 
 

 
 
The last two runs were considered repeat tests for reproducibility checking.  They were not used 
in the ANOVA or regression models.  
 
For methane conversion, the authors fitted a linear model shown in Equation 4 of the paper, 
given by (in coded factors): 
 
CH4 conversion (%) = 35.24 + 1.24 A – 3.44 B + 2.69 C – 3.42 D + 2.30 E + 5.16 AB – 0.96 AC 
   + 1.69 AD + 0.23 AE – 4.23 BC + 2.53 BE – 2.89 ABE + 7.06 ACD 
 
The authors stated that the selected effects in the equation were all statistically insignificant 
although AB, BC, and ACD have greater effects over the model.  It is not clear why the authors 
included three-factor interaction terms in the model.  These effects are usually ignored in practice.  
It is likely that the selected model is flawed.  
 
For the selectivity of C2+ product, the ANOVA results are shown in Table 3 of the paper and are 
reproduced here in Table 9.9. The authors then suggested the following equation to represent C2+ 
selectivity (Equation 5 of the paper): 
 
C2+ selectivity (%) = 28.11 + 0.056 A + 5.74 B + 3.52 C – 4.61 D + 13.91 E – 3.69 AB + 9.04 AD 

- 4.40 AE + 12.41 BC – 16.33 BD + 5.48 BE + 4.83 ABE 
 
The ANOVA results show that only factor A (temperature) was not statistically significant at the 
5% level.  

Run A B C D E CH4 Conversion (%) C2+ Selectivity (%) C2H4/C2H6 ratio
1 850 35000 2 0.5 7 40.43 62.09 1.64
2 850 35000 0 0.2 7 54.45 52.72 2.07
3 750 35000 2 0.5 7 19.96 34.38 0.44

4 750 18000 0 0.2 3 35.96 13.90 1.28
5 850 18000 0 0.2 3 31.93 8.31 1.20
6 750 35000 2 0.2 3 30.98 57.18 1.09
7 750 18000 0 0.5 7 34.77 55.11 0.86
8 850 18000 2 0.5 3 45.94 30.76 3.25
9 850 18000 0 0.5 7 23.34 47.68 1.76
10 750 35000 0 0.2 3 15.08 25.05 1.47
11 750 18000 2 0.5 3 41.83 2.79 1.76
12 850 35000 2 0.2 3 29.66 45.48 2.37
13 850 18000 2 0.5 7 47.46 29.70 2.12
14 750 18000 2 0.5 7 33.48 37.55 0.71
15 850 35000 0 0.2 3 45.86 13.87 1.20
16 750 35000 0 0.2 7 31.68 63.75 0.79
17 750 35000 0 0.2 7 32.61 65.75 0.79
18 750 35000 0 0.2 7 31.63 66.28 0.80

ResponsesFactors
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Table 9.9:  ANOVA table of C2+ selectivity. Table 3 of Chua et al (2007). 
 

 
 
The authors examined the two-factor interaction plots and concluded that interactions between 
factors AB, AE, and BE were not statistically significant in this study and hence the temperature 
factor was dropped from the next phase of experimentation.  For the C2H4/C2H6 ratio, the authors 
did not provide any ANOVA results or model. However, some explanation regarding this response 
was given in the paper.  
 
From the initial fractional factorial results, the authors concluded that the ANOVA was dominated 
by the C2+ selectivity response and that the temperature variable could be fixed at 850 °C for the 
next round of experimentation.  For the optimization study, the authors chose a four factor face-
centered central composite design (FCD) with six center points. The levels were the same ones 
used in the fractional factorial design. The FCD required 16 runs for the factorial points, 8 runs for 
the axial points, and 6 center-points. Hence a total of 30 experiments were conducted.  An 
additional response, called the C2+ yield (%) was added. (This can be calculated from methane 
conversion and C2+ selectivity; details are given in the paper.)  
 
The FCD and responses obtained are shown in Table 4 of the paper and are reproduced here in 
Table 9.10. The key goal was to maximize the C2+ yield hence the focus was on analysing this 
response.  The authors did not show the ANOVA tables for any of the responses analysed. Only 
the prediction equation in coded factors for C2+ yield was given. This is Equation 6 of the paper, 
given by: 
 
C2+ yield (%) = 20.63 + 2.34 A + 2.28 B – 0.53 C + 4.30 D – 1.75 AB + 0.87 AC – 0.30 AD 

- 5.19 BC – 0.70 BD – 2.09 CD.  

Sum of Mean
Source Squares d.f. square F-value Prob> F

Model 5805.62 12 483.80 418.79 0.0002

A 0.05 1 0.05 0.04 0.8476
B 263.70 1 263.70 228.26 0.0006
C 99.40 1 99.40 86.05 0.0027
D 84.92 1 84.92 73.50 0.0033
E 1547.07 1 1547.07 1339.16 <0.0001
AB 145.04 1 145.04 125.55 0.0015
AD 653.41 1 653.41 565.60 0.0002
AE 206.51 1 206.51 178.75 0.0009
BC 1232.06 1 1232.06 1066.49 <0.0001
BD 1066.35 1 1066.35 923.05 <0.0001
BE 240.35 1 240.35 208.05 0.0007
ABE 372.68 1 372.68 322.60 0.0004
Residual 3.47 3 1.16
Corr. Total 5809.08 15
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No goodness of fit statistics were given and there was no indication of whether all the terms were 
statistically significant.  
 
Table 9.10: Experimental matrix of 24 full factorial with central composite design. Table 4 of Chua 
et al (2007). 
 

 
 
The authors then compared the results obtained by the DOE method with those obtained using an 
incipient wetness impregnation, and mixture slurry methods.  They found that the results were 
almost identical.   
 

GHSV Pretreat Dilution CH4/O2 CH4 C2+ C2+ C2H4/C2H6

Run (cm3/g/h) time (h) ratio ratio Conv (%) select (%) yield (%) ratio
1 18000 0 0.2 3 32.78 9.02 2.96 1.20
2 35000 0 0.2 3 46.54 14.97 6.97 1.25

3 18000 2 0.2 3 44.63 51.44 22.96 2.72
4 35000 2 0.2 3 43.99 47.09 20.71 2.37
5 18000 0 0.5 3 43.62 25.85 11.28 2.76
6 35000 0 0.5 3 46.78 65.71 30.74 2.07
7 18000 2 0.5 3 36.12 32.72 11.82 3.25
8 35000 2 0.5 3 49.37 30.80 15.21 2.13
9 18000 0 0.2 7 25.61 57.13 14.63 1.15

10 35000 0 0.2 7 54.45 52.72 28.71 2.07
11 18000 2 0.2 7 42.01 77.12 32.40 1.53
12 35000 2 0.2 7 43.18 73.75 31.85 1.32
13 18000 0 0.5 7 42.49 62.15 26.41 1.76
14 35000 0 0.5 7 35.40 70.73 25.04 1.15
15 18000 2 0.5 7 48.11 31.61 15.21 2.12
16 35000 2 0.5 7 38.54 59.29 22.85 1.64
17 18000 1 0.35 5 37.42 65.42 24.48 1.93
18 35000 1 0.35 5 37.96 58.66 22.27 1.48
19 26500 0 0.35 5 20.74 60.58 12.56 1.20
20 26500 2 0.35 5 41.83 65.50 27.40 1.30
21 26500 1 0.2 5 41.78 61.76 25.80 1.49
22 26500 1 0.5 5 30.66 61.72 18.92 1.39
23 26500 1 0.35 3 46.84 51.10 23.94 1.63
24 26500 1 0.35 7 36.66 73.56 26.97 1.20
25 26500 1 0.35 5 25.60 67.98 17.40 1.99
26 26500 1 0.35 5 27.94 71.82 20.07 1.68
27 26500 1 0.35 5 33.10 56.92 18.84 1.85
28 26500 1 0.35 5 27.01 69.27 18.71 1.42
29 26500 1 0.35 5 25.61 67.42 17.27 1.75
30 26500 1 0.35 5 23.91 64.94 15.53 1.63

Factors Responses
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Case Study #9.3 

Fontes, G. C., Priscilla Filomena Fonseca Amaral, Marcio Nele, and Maria Alice Zarur Coelho 
(2010): Factorial design to optimize biosurfactant production by Yarrowia lipolytica. Journal 
of Biomedicine and Biotechnology, Volume 2010, Article 821306, 8 pages. 

This study investigated the improvement of biosurfactant production by Yarrowia lipolytica 
IMUFRJ 50682 using a two-level factorial designs followed by a central composite design. 
Biosurfactants have advantages over synthetic ones because of their high specificity and 
biodegradability. They have applications in many industries, ranging from food to petrochemicals. 
However, biosurfactants are expensive to produce.  Therefore any means to improve production 
at lower cost is welcomed.  
 
This study evaluated two separate sources for biosurfactant production - a nitrogen source and a 
carbon source. For the nitrogen source study, four factors were investigated using a 2-level full 
factorial design with 4 factors and 3 center points. A total of 19 run combinations were required.  
STATISTICA version 7.0 software was used for regression and graphical analyses of the data. The 
details of the experiments were given in the paper. 
 
The factors and levels used were shown in Table 1 of Fontes et al (2010) and are reproduced here 
as Table 9.11.  
 
Table 9.11: Factors and levels used in the 24 full factorial design for the nitrogen source study. 
Table 1 of Fontes et al (2010). 
 
    Level 
Factor Units -1 0 1 
Peptone (x1) g/L 0 6.4 12.8 
Yeast extract (x2) g/L 5 10 15 
Ammonium sulfate (x3) g/L 0 5 10 
Urea (x4) g/L 0 0.1 0.2 

 
Two responses were measured for both studies. These were the maximum variation of surface 
tension (ST), in mN/m and the emulsification index (EI), in percentage. The exact definition of 
these responses were explained in the paper.  

For the carbon source study, the same full factorial design was used except with factors and levels 
shown in Table 2 of the paper and are reproduced here as Table 9.12.  
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Table 9.12: Factors and levels used in the 24 full factorial design for the carbon source study (Table 
2 of Fontes et al, 2010). 
 
    Level 
Factor Units -1 0 1 
Glycerol (z1) % w/v 0 1 2 
Olive oil (z2) % w/v 0 2 4 
Hexadecane  (z3) %w /v 0 1 2 
Glucose (z4) % w/v 0 2 4 

 

The run combinations and results for the nitrogen source experiment were given in Table 3 of the 
paper and reproduced here as Table 9.13.  
 
Table 9.13: Experimental design and results of the 24 full factorial design for nitrogen source 
evaluation (Table 3 of Fontes et al, 2010) 
 

Std Order x1 x2 x3 x4 ST EI 
1 -1 -1 -1 -1 6.5 37.3 
2 1 -1 -1 -1 14.5 26.1 
3 -1 1 -1 -1 5.1 27 
4 1 1 -1 -1 4 1 
5 -1 -1 1 -1 16.6 45.3 
6 1 -1 1 -1 22 52.2 
7 -1 1 1 -1 19.5 40.6 
8 1 1 1 -1 13 50 
9 -1 -1 -1 1 7.5 35.7 

10 1 -1 -1 1 6 30.6 
11 -1 1 -1 1 9.3 13 
12 1 1 -1 1 4.6 6.2 
13 -1 -1 1 1 15.2 40.3 
14 1 -1 1 1 16.3 50.1 
15 -1 1 1 1 21.1 60.4 
16 1 1 1 1 9.4 43.2 
17 0 0 0 0 13 26 
18 0 0 0 0 11.4 24 
19 0 0 0 0 11 25.4 

 

For the nitrogen source study, the authors used a Pareto chart to display the ranked order of the 
effects and which effects were statistically significant. For the emulsification index (EI), the order 
of significant effects was x3, x2x3, x2, x1x3, x1x2, and x1. Other effects were not statistically 
significant at the 5% level.  The regression equation is thus: 

EI = 33.4 – 2.5 x1 – 4.7 x2 + 12.8 x3 – 2.5 x1x2 + 3.6 x1x3 + 5.5 x2x3 
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For the variation in surface tension (ST), the order of the significant effects were x3, x1x2, x1x4, 
and x2. Other effects were not statistically significant. The regression equation is given by: 

ST = 11.9 – 1.16 x2 + 4.7 x3 – 2.3 x1x2 – 1.4 x1x4.  

These equations are collectively known as Equation 1 in the paper.  

Notice the equation for ST is not hierarchical as x4 is missing. The R2 values for EI and ST were 
reported as 0.87 and 0.86, respectively.  

 
Table 9.14: Experimental design and results of the 24 full factorial design for carbon source 
evaluation. Table 3 of Fontes et al (2010). 
 

Std 
Order z1 z2 z3 z4 ST EI 

1 -1 -1 -1 -1 9 6.9 
2 1 -1 -1 -1 19.5 62.3 
3 -1 1 -1 -1 2 11.6 
4 1 1 -1 -1 11 25.5 
5 -1 -1 1 -1 2.6 12.8 
6 1 -1 1 -1 10.7 70.2 
7 -1 1 1 -1 2 27.5 
8 1 1 1 -1 9.9 39.3 
9 -1 -1 -1 1 27.8 56.2 

10 1 -1 -1 1 20.2 82.9 
11 -1 1 -1 1 14.4 48.8 
12 1 1 -1 1 14.8 40 
13 -1 -1 1 1 14.9 47.3 
14 1 -1 1 1 12.6 76.8 
15 -1 1 1 1 14.4 38.9 
16 1 1 1 1 13 26 
17 0 0 0 0 10.9 42.3 
18 0 0 0 0 9.8 43.1 
19 0 0 0 0 11.2 43.9 

 

For the carbon source study, Pareto charts showed that for EI, the ordered significant effects were 
z1, z1z2, z4, z2, z1z4, z3z4, and z2z3. Others were not statistically significant at the 5% level. For ST, 
the ordered significant effects were z4, z1z4, z3, z2, z2z3, and z1. Other effects were not statistically 
significant at the 5% level. According to the authors, although z2 (Olive oil) and z3 (Hexadecane) 
were statistically significant, they present a negative effect.  Hence z1 (glycerol) and x4 (glucose) 
were considered the best substrates to increase biosurfactant production. The authors then 
performed another set of experiments using only z1 and z4 but in a rotatable CCD design with an 
additional response - the carbon to nitrogen (C/N) ratio.  The factors and levels used in the CCD 
was shown in Table 5 of the paper and are reproduced here as Table 9.15.  
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Table 9.15: Coded and actual levels of the two variables in the CCD. Table 5 of Fontes et al, 2010). 
 

    Level 
Factor Units -1.41 -1 0 1 1.41 
Glycerol (z1) % w/v 0.59 1 2 3 3.41 
Glucose (z4) % w/v 1.17 2 4 6 6.83 

 

The CCD had eight runs plus three center points giving a total of 11 combinations. The design and 
results of the three responses are shown in Table 6 of the paper and are reproduced here as Table 
9.16. 

Table 9.16: Experimental design and results of the CCD. Table 6 of Fontes et al (2010). 
 

Std 
Order z1 z4 C/N EI ST 

1 -1 -1 5.9 51.4 11.8 
2 1 -1 10.4 66.2 13.6 
3 -1 1 13.3 60.8 12.9 
4 1 1 17.8 67.3 16 
5 -1.41 0 8.7 54.1 12.1 
6 1.41 0 15.1 57.8 15 
7 0 -1.41 6.6 61.4 12.4 
8 0 1.41 17.1 73.7 16.2 
9 0 0 11.9 81.8 19.5 

10 0 0 11.9 81.1 19 
11 0 0 11.9 80.9 20.1 

 

The authors fitted a second-order regression to the responses and obtained the following equations 
for EI and ST.  This set of equations is Equation 2 in the paper, shown below:  

𝐸𝐸𝐸𝐸 = 81.3 + 4.8 𝑧𝑧1 − 6.9 𝑧𝑧12 + 1.9 𝑧𝑧4 − 12.7 𝑧𝑧42 − 2.0 𝑧𝑧1𝑧𝑧4 

𝑆𝑆𝑆𝑆 = 19.5 + 1.2 𝑧𝑧1 − 2.6 𝑧𝑧12 + 0.9 𝑧𝑧4 − 3.0 𝑧𝑧42 
No ANOVA results were given but the R2 for both equations were given as 0.99.  

The above mathematical models were validated by using mean values at the central points. The 
authors stated that the experimental EI and ST values perfectly agreed with the predicted 
maximum.  
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Case Study #9.4 

He, Z., Ya-Juan Han, Shuang Zhao, and Sung H. Park (2009): Product and process optimisation 
through Design of Experiments: A case study. Total Quality Management, Vol. 20, No. 1, pp 
107-113.  

This case study considered the application of DOE techniques to optimize the design of a fused 
biconical taper wavelength multiplexer that is used in communication devices. The major goal of 
the research was to increase isolation - a measure of crosstalk between communication channels; 
the larger the isolation, the higher the transmission quality, leading to higher profits. The authors 
first considered six factors in a 26-2 resolution IV design to screen for significant factors.  The 
factors and levels are shown in Table 9.17 which is adapted from Table 1 of the paper. 

 
Table 9.17:  Factors and their levels in the experiment. Adapted from Table 1 of He et al (2009). 
 

Factor Name Low level High level 
A Flame height 207.0 213.0 
B Hydrogen flux 52.0 69.0 
C Taper speed 1.0 1.3 
D Optic distribution ratio 74.5 78.0 
E Humidity 0.4 0.6 
F Temperatrure 19.0 25.0 

 

The defining relationship used for this quarter fraction design was I=ABCE=BCDF=ADEF. Table 
9.18 shows the run combinations with three center points.  Hence total number of runs was 19. 
The response was the isolation, Y. No units were given for the factors or response.  

The statistical analyses were carried out using Minitab (no version given).  The initial analysis by 
the authors did not find any statistically significant factors when curvature was not taken into 
account in the ANOVA.  However, when curvature was taken into account, the curvature term was 
highly statistically significant. This was shown in Table 5 of the paper and is reproduced here in 
Table 9.19.  
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Table 9:18: Experimental arrangement for the 26-2
IV (coded variables). Table 2 of He et al (2009) 

 
Std order Run order A B C D E F Y 

1 10 -1 -1 -1 -1 -1 -1 21.4 
2 3 1 -1 -1 -1 1 -1 19.4 
3 14 -1 1 -1 -1 1 1 22.2 
4 2 1 1 -1 -1 -1 1 22.3 
5 6 -1 -1 1 -1 1 1 24.5 
6 7 1 -1 1 -1 -1 1 20.1 
7 9 -1 1 1 -1 -1 -1 19.5 
8 4 1 1 1 -1 1 -1 20.8 
9 16 -1 -1 -1 1 -1 1 20.6 

10 17 1 -1 -1 1 1 1 18.9 
11 13 -1 1 -1 1 1 -1 23.4 
12 18 1 1 -1 1 -1 -1 23.6 
13 8 -1 -1 1 1 1 -1 22.6 
14 5 1 -1 1 1 -1 -1 18.7 
15 15 -1 1 1 1 -1 1 23.5 
16 12 1 1 1 1 1 1 23.7 
17 19 0 0 0 0 0 0 26.5 
18 11 0 0 0 0 0 0 24.8 
19 1 0 0 0 0 0 0 27.2 

 
 
Table 9.19: Estimated effects and coefficients for Y (coded units).  Table 5 of He et al (2009). 
 

Term Effect Coeff SE Coeff T P 
Constant  21.575 0.2275 94.85 0.000* 
A -1.2750 -0.6375 0.2275 -2.8 0.049* 
B 1.6000 0.8000 0.2275 3.52 0.025* 
Constant 0.2000 0.1000 0.2275 0.44 0.683 
D 0.6000 0.3000 0.2275 1.32 0.258 
E 0.7250 0.3625 0.2275 1.59 0.186 
F 0.8000 0.4000 0.2275 1.76 0.153 
A*B 1.7250 0.8625 0.2275 3.79 0.019* 
A*C -0.4250 -0.2125 0.2275 -0.93 0.403 
A*D -0.0250 -0.0125 0.2275 -0.05 0.959 
A*E -1.2000 -0.6000 0.2275 -2.64 0.058 
A*F -1.7500 -0.8750 0.2275 -0.38 0.720 
B*D 1.7500 0.8750 0.2275 3.85 0.018* 
B*F 0.3000 0.1500 0.2275 0.66 0..546 
Ct. Pt.  4.5917 0.5725 8.02 0.001* 
S=0.909899,  R-sq = 97.01%, R-sq (adj) = 86.54%   

Note: *means that the P-value is less than 0.05, and the corresponding term is significant. 
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The authors then considered factors A, B and D only for a follow up experiment using rotatable 
central composite design (CCD) with six center points to model the curvature.  These individual 
factors were either statistically significant or were involved with two-factor interactions that were 
significant. The new set of experiments with A, B, and D are shown in Table 9.20.   
 
A second-order model was then fitted to the new set of data from the rotatable CCD.  The estimated 
regression coefficients for the full model are shown in Table 7 of the paper.  After removing the 
non-significant two-factor interaction terms, and maintaining hierarchy, the final estimated 
regression coefficients for Y in coded units were calculated and shown in Table 9 of the paper and 
reproduced here as Table 9.20. 
 
Table 9:20: Experimental arrangement for the CCD (coded units). Table 6 of He et al (2009). 
 

Std order Run order A B D Y 
1 8 -1 -1 -1 21.2 
2 7 1 -1 -1 21.4 
3 5 -1 1 -1 21.7 
4 6 1 1 -1 22.3 
5 15 -1 -1 1 22.4 
6 19 1 -1 1 21.9 
7 1 -1 1 1 22.1 
8 12 1 1 1 20.6 
9 3 -1.68179 0 0 21.7 

10 17 1.68179 0 0 21.3 
11 2 0 -1.68179 0 19.2 
12 18 0 1.68179 0 21.4 
13 4 0 0 -1.68179 20.4 
14 11 0 0 1.68179 19.8 
15 16 0 0 0 23.6 
16 9 0 0 0 25.3 
17 20 0 0 0 25.7 
18 10 0 0 0 26.4 
19 14 0 0 0 24.8 
20 13 0 0 0 24.1 
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Table 9.21: Final estimated regression coefficients for Y (coded units).  Table 9 of He et al (2009). 
 

Term Coeff SE Coeff T P 
Constant 24.9404 0.4396 56.737 0.000* 
A -0.1371 0.2916 -0.470 0.646 
B 0.2563 0.2916 0.879 0.396 
D -0.0446 0.2916 -0.153 0.881 
A*A -0.9508 0.2839 -3.349 0.005* 
B*B -1.3750 0.2839 -4.843 0.000* 
D*D -1.4457 0.2839 -5.092 0.000* 
S=1.078,  R-sq = 80.0%, R-sq (adj) = 70.8%   

Note: *means that the P-value is less than 0.05, and the corresponding term is significant. 
 

The final prediction equation in coded units is (Equation 1 of the paper): 

𝑦𝑦� = 24.9404 − 0.1371 𝑥𝑥1 + 0.2563 𝑥𝑥2 − 0.0446 𝑥𝑥3 − 0.9508 𝑥𝑥12 − 1.375 𝑥𝑥22 − 1.4457𝑥𝑥32 

where: x1 is the flame height, x2 is the hydrogen flux, and x3 is the optic distribution ratio. The 
optimum conditions were near the center points with x1 = -0.072, x2 = 0.093 and x3 = -0.015.  The 
overall optimum condition for all factors were A = 210, B = 61, C = 1.00, D = 76, E = 0.4, and F 
= 19.   

According to the authors, the isolation was 20 before optimization and 24.9404 after optimization 
with a 95% confidence interval of (23.9907, 25.8900), which was confirmed by confirmation runs.  

 

Case Study #9.5 

Raj, R. E., and B.S.S. Daniel (2011): Customization of closed-cell aluminum foam properties using 
design of experiments. Material Science and Engineering A, 528, pp. 2067-2075. 

This study investigated factors that would influence the properties of closed-cell aluminum foam 
using experiments based on a fractional factorial design followed by a face-centered central 
composite design. According to the authors, aluminum foams are useful for various applications 
due to their high energy absorbing capacity, light weight, and high specific stiffness. The 
characteristic properties of interest are relative density, average pore diameter, and the average cell 
aspect ratio.  The process of foaming and measurement of properties were described in the paper.  

In the first stage of the experiment, the authors considered four major influencing factors - holding 
time, amount of TiH2, amount of calcium, and the stirring time after calcium addition. A half 
fraction of a two-level factorial design (24-1) with the four factors was used. The factors and levels 
are summarized in Table 9.22.  
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Table 9.22:  Factors and levels used in the fractional factorial design 
 

Factor Name Units Low level (-1) High level (+1) 
A Holding time  s 80 120 
B Amount of TiH2 wt % 0.6 1.0 
C Amount of Ca wt % 0.8 1.2 
D Stirring time for Ca min 8 12 

 

Design-Expert 7.1.3 was used for the experimental design and subsequent statistical analysis and 
modeling. The defining relationship for the 24-1 design was not mentioned in the paper. It is 
assumed that the default in Design-Expert was used.  

Three responses were measured - relative density, the average pore diameter (mm), and the cell 
aspect ratio.   

The experimental design and results are shown in Table 1 of the paper and are shown here in Table 
9.23.  

Table 9.23: Phase I experimental design conditions and their corresponding structural properties 
of the closed-cell aluminum foam. Table 1 of Raj et al, 2011). 

 
 

The ANOVA results for the three responses were summarized by the authors in Table 2 of the 
paper and are reproduced here as Table 9.24.  

Table 9.24:  ANOVA summary and the model statistic result of the phase-I half fractional factorial 
design of experiments. Table 2 of Raj et al (2011). 
 

 
The 24-1 design is a resolution IV design, hence only the main effects can be cleanly estimated. 
The two-factor interactions are aliased with other two-factor interactions. The authors used Pareto 

Exp No. 
Holding time 

(A)
Amount of TiH2 

(B)
Amount of Ca 

(C)
Stirring time 

(D)
Relative 
density

Average pore 
diameter (mm)

Cell aspect 
ratio

1 80 0.6 0.8 8 0.267 2.883 1.019
2 120 0.6 0.8 12 0.266 3.120 1.364

3 80 1.0 0.8 12 0.176 3.063 1.042
4 120 1.0 0.8 8 0.196 3.137 1.072
5 80 0.6 1.2 12 0.225 3.020 1.054
6 120 0.6 1.2 8 0.305 2.923 1.040
7 80 1.0 1.2 8 0.157 3.274 1.061
8 120 1.0 1.2 12 0.179 3.300 1.200

Process parameters Structural properties

Response Model type F-vlaue p-value Adj R-squared Pred R-squared Signal-to Noise ratio
Relative density Factorial (R2FI) 36.43 0.0269 0.9620 0.8262 15.356
Average pore diameter Factorial (R2FI) 119.25 0.0083 0.9883 0.9465 34.883
Cell aspect ratio Factorial (R2FI) 11.38 0.0827 0.8811 0.4566 9.644
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charts to display the effects and determined that only factor A (holding time) and factor B (amount 
of TiH2) were considered as significant factors for further investigation. The exact form of the 
reduced two-factor interaction models in Table 9.24 was not mentioned.  

For the second phase of the investigation, the authors chose a face-centered central composite 
design with five center points. The range for factor A was changed to 60 - 140 (instead of 80 - 
100), and for factor B it was changed to 0.5 - 1.5 (instead of 0.6 - 1.0).  The face-centered CCD 
had 8 factorial points and 5 center points. The new design and experimental results were shown in 
Table 3 of the paper and are reproduced here in Table 9.25. 

The ANOVA results were summarized by the authors in Table 4 of the paper and are reproduced 
here in Table 9.26.   

Table 9.25: Phase II experimental design conditions and their corresponding structural properties 
of the closed-cell aluminum foam. Table 3 of Raj et al (2011). 
 

 
 
 
Table 9.26:  ANOVA summary and the model statistic result of the phase-II CCD. Table 4 of Raj 
et al v(2011). 
 

 

 

From Table 9.26, a quadratic model fitted the relative density response well while the linear model 
fitted the other two responses. However, it was not mentioned in the paper which terms in the 

Exp No. 
Holding time 

(A)
Amount of TiH2 

(B) Relative density
Average pore 

diameter (mm) Cell aspect ratio

1 60 0.5 0.351 2.186 1.008
2 100 0.5 0.337 2.240 1.091

3 140 0.5 0.286 3.325 1.180
4 60 1.0 0.159 2.559 1.010
5 100 1.0 0.148 3.200 1.087
6 140 1.0 0.123 3.407 1.120
7 60 1.5 0.102 3.204 1.101
8 100 1.5 0.095 3.644 1.025
9 140 1.5 0.080 4.486 1.259
10 100 1.0 0.107 3.139 1.063
11 100 1.0 0.108 2.931 1.085
12 100 1.0 0.116 3.232 1.107
13 100 1.0 0.100 3.251 1.084

Process parameters Structural properties

Response Model type F-vlaue p-value Adj R-squared Pred R-squared Signal-to Noise ratio
Relative density Quadratic 62.49 0.0001 0.9624 0.9168 21.664
Average pore diameter Linear 52.07 0.0001 0.8949 0.8185 24.505
Cell aspect ratio Linear 7.78 0.0092 0.5306 0.1194 8.093
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model were statistically significant and which were not. The authors presented the regression 
models for each of the responses. These were Equations 2, 3, and 4 in the paper. They are 
reproduced below: 

Relative density = 0.8343 – 0.0019846 A – 0.9453 B + 0.00053 AB + 0.0000047166 A2  

   + 0.3302 B2 

Average pore diameter (mm) = 0.5785 + 0.0136 A + 1.1944 B 

Cell aspect ratio = 1.0217 + 0.0014307 A – 0.2810 B – 0.00017375 AB + 0.0000028632 A2 

   + 0.1829 B2 

It is not clear why the regression equation for the cell aspect ratio was a quadratic instead of a 
linear model as shown in Table 9.26. No validation was done for any of the models.  

 

Case Study #9.6 

Vicente, G., Mercedes Martinez, and Jose Aracil (2007): Optimization of integrated biodiesel 
production. Part I. A study of the biodiesel purity and yield. Bioresource Technology, 98, pp. 
1724-1733.  

This study investigated the development and optimization of potassium hydroxide catalyzed 
synthesis of fatty acid methyl esters (biodiesel) from sunflower oil. The authors first started the 
experiments with a full factorial design with three factors and four center points. Then the design 
was augmented by adding star or axial points to model non-linearity observed in the responses. 
The factors and levels investigated were temperature, initial catalyst concentration, and 
methanol:vegetable oil molar ratio.  The factors and levels used in the factorial experiment are 
summarized in Table 9.27. 

Table 9.27: Factors and levels used in the biodiesel experiment. 
 

 
 

The responses were the biodiesel purity (P in % weight) and the biodiesel yield (Y in % weight). 
The experimental design and results were given in Table 1 of the paper and are reproduced here in 
Table 9.28.  

 

 

 

Factor (coded) Name Unit Low level (-1) Mid level (0) High Level (+1)
T (XT) Temperature °C 25 45 65
C (XC) Initial catalyst concentration % wt 0.5 1.0 1.5
MR (XMR) Vegetable oil molar ratio 4.5 6.0 7.5
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9.28:  Experiment matrix and results: factorial and centre points. Table 1 of Vicente et al (2007). 
 

 
The software to carry out the statistical analyses was not mentioned in the paper.  The statistical 
tests were performed at a 5% significance level. The statistical model obtained for P (purity), in 
terms of coded units was: 

P = 92.6137 + 3.0337 XT + 6.1462 XC + 2.7562 XMR – 2.7487 XTXC + 0.3221 XTXMR  

-1.5662 XCXMR  (r2 = 0.994)  

And for the yield Y was: 

Y = 95.8950 – 1.6775 XT – 2.4200 XC + 0.0800 XMR – 1.8725 XTXC – 0.4275 XTXMR 

 -0.4050 XCXMR  (r2 = 0.995) 

These were Equations 1 and 2 in the paper. Equations in terms of actual factors were also given in 
the paper.  

For response P, the authors identified the effects T, C, MR, T.C, T.MR and C.MR as statistically 
significant. Curvature was also statistically significant. For response Y, statistically significant 
effects were T, C, T.C, and T.MR.  The curvature was also statistically significant.  

To model the nonlinear effect, the authors augmented the two-level factorial design by adding star 
or axial points at (+α and –α) to the design making it a rotatable central composite design with 18 
runs. The α used was 1.68.  It was not mentioned whether these new runs were put in a separate 
block. The additional star points were shown in Table 3 of the paper and are reproduced here as 
Table 9.29.  

 

 

 

Run T (°C) C (% wt) MR XT XC XMR P (%wt) Y (% wt)
1 65 1.5 7.5 1 1 1 99.95 89.42
2 65 1.5 4.5 1 1 -1 98.14 90.43
3 25 0.5 7.5 -1 -1 1 84.08 99.28
4 25 1.5 4.5 1 1 -1 97.00 97.17
5 65 0.5 7.5 -1 -1 1 97.50 98.32
6 25 1.5 7.5 -1 1 1 99.95 96.88
7 65 0.5 4.5 1 -1 -1 87.00 98.70
8 25 0.5 4.5 -1 -1 -1 77.29 96.96
9 45 1 6 0 0 0 99.80 98.40
10 45 1 6 0 0 0 99.72 97.94
11 45 1 6 0 0 0 99.38 98.63
12 45 1 6 0 0 0 99.44 97.48
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9.29:  Experimental matrix and results: star points. Table 3 of Vicente et al (2007). 
 

 
The authors then fitted a full second-order model to the responses and obtained the following 
equations (in coded units) for P and for Y (Equations 5 and 6 in the paper): 

𝑃𝑃 = 99.4978 + 2.7266 𝑋𝑋𝑇𝑇 + 6.9623 𝑋𝑋𝐶𝐶 + 3.5861 𝑋𝑋𝑀𝑀𝑀𝑀 − 0.8896 𝑋𝑋𝑇𝑇2 − 2.7487 𝑋𝑋𝑇𝑇𝑋𝑋𝐶𝐶 +
         0.3212 𝑋𝑋𝑇𝑇𝑋𝑋𝑀𝑀𝑀𝑀 − 4.3598 𝑋𝑋𝐶𝐶2 − 1.5662 𝑋𝑋𝐶𝐶𝑋𝑋𝑀𝑀𝑀𝑀 − 2.3534 𝑋𝑋𝑀𝑀𝑀𝑀2      (r2 = 0.969)  

𝑌𝑌 =  98.1063 − 1.4510 𝑋𝑋𝑇𝑇 − 2.0058 𝑋𝑋𝐶𝐶 + 0.2985 𝑋𝑋𝑀𝑀𝑀𝑀 − 0.7808 𝑋𝑋𝑇𝑇2 − 2.0225 𝑋𝑋𝑇𝑇𝑋𝑋𝐶𝐶 −
          0.5775 𝑋𝑋𝑇𝑇𝑋𝑋𝑀𝑀𝑀𝑀 − 1.0036 𝑋𝑋𝐶𝐶2 − 0.2550 𝑋𝑋𝐶𝐶𝑋𝑋𝑀𝑀𝑀𝑀 − 0.3283 𝑋𝑋𝑀𝑀𝑀𝑀2      (r2 = 0.964)  

Equations in terms of actual factors were also given in the paper. However there is no indication 
which of the regression coefficients were statistically significant.  

Optimization of purity and yield are assumed to have used the quadratic equations developed. The 
optimal values of the variables were temperature at 25 °C, a 1.3% wt catalyst concentration, and a 
6:1 methanol:sunflower oil molar ratio. Using these values the predicted purity was 100% wt and 
yield was 98.4 %wt.   

 

Case Study #9.7 

Zhou, J., Yong-Hong Wang, Ju Chu, Ling-Zhi Luo, Ying-Ping Zhuang, and Si-Liang Zhang 
(2009): Optimization of cellulose mixture for efficient hydrolysis of steam-exploded corn 
stover by statistically designed experiments. Bioresource Technology, 100, pp. 819-825. 

In this study, statistically designed experiments were used to optimize the composition of cellulose 
mixture to maximize the amount of glucose produced from a steam-exploded corn stover - the 
purpose being to improve enzymatic hydrolytic efficiency and reduce production cost. A half 
fraction six-factor fractional factorial (26-1) design with 32 runs and four center points was first 
used as a screening experiment.  This was followed up with a rotatable central composite design 
with only four factors identified from the screening experiment.  The six factors and their levels 
used in the screening experiment were shown in Table 2 of the paper and are reproduced here with 
slight modifications as Table 9.30. The choice of factors and experimental methods used were 
described in the paper. Design-Expert Version 6.0.4 software was used for the design and analysis 
of the experiments.  

 

Run T (°C) C (% wt) MR XT XC XMR P (%wt) Y (% wt)
13 78.63 1 6 +α 0 0 99.82 94.28
14 11.36 1 6 -α 0 0 92.11 97.37
15 45 1.84 6 0 +α 0 99.80 92.45
16 45 0.16 6 0 -α 0 72.50 97.94
17 45 1 8.52 0 0 +α 99.83 97.77
18 45 1 3.47 0 0 -α 96.44 83.82
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Table 9.30: Factors and code values of fractional factorial design. Table 2 of Zhou et al (2009). 

 

The screening experiment was a resolution VI design meaning all main effects are aliased with 
five factor interactions and all two-factor interactions are aliased with four-factor interactions. This 
allows a full two-factor interaction model to be fitted without bias.  The default defining 
relationship in Design-Expert was used to generate the 26-1 fractional factorial design. The design 
and experimental results were shown in Table 1 of the paper and are reproduced here as Table 
9.31. The response measured was the glucose production in mg/ml. 

The authors fitted a two-factor interaction model to the experimental data and produced the 
following regression equation (Equation 3 in the paper).  All terms were used in the model 
regardless of their significance.  

Glucose (mg/ml) = 4.875 + 0.665 x1 + 0.643 x2 + 0.291 x3 + 0.427 x4 + 0.427 x5 + 0.313 x6  
+ 0.119 x1x2 + 0.153 x1x3 – 0.0056 x1x4 – 0.051 x1x4 + 0.063 x2x5  
– 0.074 x2x6 + 0.142 x3x4 + 0.51 x3x5 + 0.256 x3x6 – 0.085 x4x5  
+ 0.074 x4x6 – 0.016 x5x6 

 

The predicted values using the above equation were also given in Table 9.31. The estimated 
coefficients and their corresponding F and p-values were given in Table 3 in the paper and are 
reproduced here in Table 9.32.  The full ANOVA results were not reported.   
 
From Table 9.32, many of the effects were not statistically significant at the 5% level.  No other 
goodness-of-fit statistics other than the R2 value were given. A closer look at the coefficients 
showed that some if not all the coefficients might have been incorrectly estimated or that the data 
used was not the same as reported in Table 9.31. The estimated intercept term in the regression 
model was given as 4.875. This value should be equal to the average value of the responses which 
is 5.025 with the center points included in the analysis, and 4.92 without including the center 
points. Furthermore, upon reanalysis of the data, the R2 value is much lower than reported and the 
predicted R2 is in fact negative for the two-factor interaction model.  The predicted results at the 
center points (when all factors are at the 0 value) in Table 9.31 were all 5.85. Using the prediction 
equation, the predicted values should all be 4.875.  
 
The authors also indicated that there was statistically significant curvature and hence a follow up 
experiment to model the nonlinearity was required. This part of the ANOVA results was not shown 
in the paper.  

Factors Code
-1 0 +1

Cel7A x1 1 3 5
Cel6A x2 2 6 10
Cel6B x3 0.5 1.0 1.5
Cel7B x4 0.5 2.5 4.5
Cel12A x5 1.5 2.25 3
Cel61A x6 0.3 0.5 0.7

Levels of factors (µmol/l)
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Table 9.31: Experimental design and results of 26-1 fractional factorial design. Table 1 of Zhou et 
al (2009). 
 

 
 

 

Runs x1 x2 x3 x4 x5 x6 Experiment Predicted
1 -1 1 -1 -1 1 -1 5.39 5.20
2 -1 1 1 -1 1 1 5.13 4.95
3 1 1 1 1 -1 -1 6.03 6.11
4 -1 -1 1 1 1 1 5.74 5.32
5 -1 -1 1 1 -1 -1 3.29 3.26
6 -1 -1 -1 1 -1 1 3.69 3.36
7 1 -1 -1 1 -1 -1 3.75 3.79
8 -1 -1 1 -1 -1 1 2.83 3.26
9 1 -1 -1 1 1 1 4.85 5.00

10 -1 1 -1 -1 -1 1 3.92 3.42
11 -1 1 1 -1 -1 -1 3.62 3.20
12 1 1 -1 1 -1 1 6.42 6.34
13 1 1 1 -1 -1 1 5.68 6.07
14 -1 -1 -1 -1 1 1 3.82 3.54
15 1 1 -1 -1 -1 -1 4.64 4.95
16 1 1 1 -1 1 -1 5.70 5.93
17 -1 1 -1 1 1 1 4.31 5.32
18 1 -1 1 1 1 -1 4.73 5.13
19 1 1 -1 1 1 -1 8.87 8.50
20 -1 1 -1 1 -1 -1 4.83 4.83
21 -1 -1 -1 -1 -1 -1 2.66 2.97
22 1 1 -1 -1 1 1 6.24 6.16
23 -1 1 1 1 -1 1 5.50 5.32
24 -1 1 1 1 1 -1 5.46 5.63
25 -1 -1 -1 1 1 -1 4.48 3.95
26 1 -1 -1 -1 1 -1 3.96 4.15
27 -1 -1 1 -1 1 -1 3.74 3.67
28 1 1 1 1 1 1 6.82 6.63
29 1 -1 1 -1 1 1 6.04 6.09
30 1 -1 -1 -1 -1 1 4.18 4.02
31 1 -1 1 1 -1 1 6.49 6.45
32 1 -1 1 -1 -1 -1 4.63 3.61
33 0 0 0 0 0 0 6.09 5.85
34 0 0 0 0 0 0 5.64 5.85
35 0 0 0 0 0 0 5.80 5.85
36 0 0 0 0 0 0 5.94 5.85

x1 = Cel7A, x2 = Cel6A, x3 = Cel6B, x4 = Cel7B, x5 = Cel12A, and x6 = Cel61A.

Glucose production (mg/ml)Experimental factors and code levels



192 
 

Table 9.32:  Regression analysis of the 26-1 fractional factorial design. Table 3 of Zhou et al (2009). 
 

 

Since the full ANOVA results were not given, it is not possible to check whether the authors used 
the wrong data in their analysis or the data reported in Table 9.31 was wrong.  

Based on the results of Table 9.32, the authors identified only factors x1, x2, x4 and x5 and their 
interactions as significant. They then used a four-factor rotatable central composite design (CCD) 
with six center points in order to develop a second-order model for optimization of glucose 
production. The total number of runs required was 30 - 16 for the factorial points, eight for the 
axial points, and six center points.  The axial points were at α = ±2.0 for a rotatable design. The 
CCD and results were given in Table 4 in the paper and are reproduced here as Table 9.33.  The 
other two factors, x3 and x6, were kept at their central values. 

 

 

 

Factors Coefficient estimate F-value p-value
Intercept# 4.875 15.870 0.0044**
Cel7A (x1) 0.666 73.080 0.0007**
Cel6A (x2) 0.643 96.860 0.0002**
Cel6B (x3) 0.291 0.163 0.3110
Cel7B (x4) 0.427 13.590 0.0042**
Cel12A (x5) 0.427 1.780 0.026*
Cel61A (x6) 0.313 2.310 0.0222*
x1x2 0.119 6.070 0.0097**
x1x3 0.153 0.186 0.2139
x1x4 -0.0056 14.940 0.0036**
x1x5 -0.051 0.920 0.047*
x1x6 0.222 0.470 0.0842
x2x3 -0.097 0.142 0.4228
x2x4 0.108 8.430 0.0068**
x2x5 0.063 1.290 0.039*
x2x6 -0.074 0.131 0.5371
x3x4 0.142 0.166 0.2472
x3x5 0.051 0.124 0.6676
x3x6 0.256 0.880 0.0514
x4x5 -0.085 1.630 0.027*
x4x6 0.074 0.131 0.5371
x5x6 -0.016 0.073 0.8857
(p-value, * <0.05, ** <0.01, and R2 = 0.9532)
# Table 3 of Zhou et al (2009) reported this incorrectly as "Model"
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Table 9.33: Design and results of central composite design. Table 4 of Zhou et al (2009). 

 

The authors fitted a full second-order regression model to the experimental results and obtained 
the following equation (Equation 4 in the paper): 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝 𝑚𝑚𝑚𝑚)
= 7.141 + 0.361 𝑥𝑥1 + 0.347 𝑥𝑥2 + 0.005 𝑥𝑥4 + 0.052 𝑥𝑥5 − 0.344 𝑥𝑥12 − 0.112 𝑥𝑥22

− 0.216 𝑥𝑥42 − 0.553 𝑥𝑥52 + 0.545 𝑥𝑥1𝑥𝑥2 − 0.064 𝑥𝑥1𝑥𝑥4 − 0.047 𝑥𝑥1𝑥𝑥5 + 0.064 𝑥𝑥2𝑥𝑥4
− 0.062 𝑥𝑥2𝑥𝑥5 + 0.005 𝑥𝑥4𝑥𝑥5 

 

Run x1 x2 x4 x5 Experiment Predicted
1 -1 -1 -1 -1 5.00 5.12
2 1 -1 -1 -1 4.64 4.50
3 -1 1 -1 -1 5.26 5.19
4 1 1 -1 -1 6.83 7.23
5 -1 -1 1 -1 5.39 5.59
6 1 -1 1 -1 5.51 5.19
7 -1 1 1 -1 5.39 5.45
8 1 1 1 -1 7.31 7.12
9 -1 -1 -1 1 5.44 5.90
10 1 -1 -1 1 5.69 5.57
11 -1 1 -1 1 5.00 5.25
12 1 1 -1 1 7.12 7.10
13 -1 -1 1 1 6.38 5.92
14 1 -1 1 1 5.08 5.33
15 -1 1 1 1 5.68 5.53
16 1 1 1 1 7.50 7.23
17 -2 0 0 0 5.19 5.04
18 2 0 0 0 6.45 6.49
19 0 -2 0 0 6.17 6.00
20 0 2 0 0 7.33 7.39
21 0 0 -2 0 6.88 6.27
22 0 0 2 0 5.78 6.28
23 0 0 0 -2 4.98 4.83
24 0 0 0 2 4.99 5.03
25 0 0 0 0 6.70 6.67
26 0 0 0 0 6.75 6.67
27 0 0 0 0 6.67 6.67
28 0 0 0 0 6.59 6.67
29 0 0 0 0 6.56 6.67
30 0 0 0 0 6.75 6.67

Glucose production (mg/ml)Level of variabless
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No ANOVA results were given and no indication of the goodness-of-fit was given. The predicted 
values based on the equation were also given in Table 9.33.  Again it can be observed that at the 
center point values, the predicted values did not match those from the equation.  The results in 
Table 9.33 showed values of 6.67, but they should have been 7.141 if the regression equation was 
used.  So either the data were incorrectly reported or the fitted equations were incorrect.   

The authors then used the regression equation to obtain the combination of the factors to give 
maximum glucose production. They found that the optimal concentrations of Cel7A (x1), Cel6A 
(x2), Cel7B (x4), and Cel 12A (x5) were 4.2, 8.1, 3.7, and 3.2 µmol/l, respectively.  

The results were validated by the authors using additional verification experiments and they found 
that the glucose produced using the optimal combinations was 15.5 mg/ml - a 2.1 fold increase 
when compared to a control group without optimization.  
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Appendix A: Summary of factors and responses for each case study. 
 

CS #2.1, pages 8-9. 
Design: General factorial 
3 Factors: Initial dye concentration, pH, Temperature 
1 Response: Adsorption of Rhodomine 6G. 
 
CS #2.2, pages 10-12. 
Design: General factorial 
3 Factors: Distance between cars, call duration, time of driving 
1 Response: Driver’s reaction time. 
 
CS #2.3, pages 13-15. 
Design: General factorial 
4 Factors: SDAS, Titanium content, copper content, T7 heat treatment 
5 Responses: Equivalent diameter, roundness, yield strength, ultimate tensile strength, elongation 
to fracture. 
 
CS #2.4, pages 15-18. 
Design: General factorial 
4 Factors: Reaction time, persulfate concentration, initial MB concentration, process temperature 
1 Response: Color removal efficiency (%). 
 
CS #3.1, pages 19-22. 
Design: 2-level factorial 
3 Factors: pH, flow rate, magnetic field 
3 responses: Induction time, total precipitation rate, homogenous precipitation rate of CaCO3. 
 
CS #3.2, pages 22-25. 
Design: 2-level factorial 
5 Factors: pH of initial solution, initial concentration of Zn or Cu, concentration of extractant, 
medium type of initial aqueous solution, stirring rate 
2 responses: % removal of zinc (II), % removal of copper (II). 
 
CS #3.3, pages 26-28. 
Design: 2-level factorial 
4 Factors: C, Q, A, T 
2 responses: Fluoride removal efficiency, fluoride flux. 
 
CS #3.4, pages 29-31. 
Design: 2-level factorial 
5 Factors: pH, particle size, Fe2+, pulp density, leaching time 
1 response: sulfur reduction (%). 
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CS #3.5, pages 31-34. 
Design: 2-level factorial 
4 Factors: Car weight, car speed, distance, surface inclination 
1 response: time taken between bump point and stop point. 
 
CS #3.6, pages 35-36. 
Design: 2-level factorial 
4 Factors: Dose AA, initial Cd (II) concentration, pH, temperature 
1 response: % removal of cadmium. 
 
CS #3.7, pages 37-38. 
Design: 2-level factorial 
4 Factors: Length of opening (or tube), radius of opening, temperature, initial RH 
1 response: Diffusion time of moisture. 
 
CS #3.8, pages 39-40. 
Design: 2-level factorial 
4 Factors: speed of rotation, cold finger temperature, experimental duration, inhibitor 
concentration 
1 response: wax deposition. 
 
CS #3.9, pages 41-42. 
Design: 2-level factorial 
4 Factors: Extraction time, microwave power, sample type 
1 response: oil yield from fresh ginger (%). 
 
CS #3.10, pages 43-44. 
Design: 2-level factorial 
3 Factors: Primary gas pressure, carrier gas pressure, powder feed rate 
3 responses: microhardness, specific wear rate, surface roughness. 
 
CS #4.1, pages 45-47. 
Design: 2-level fractional factorial (1/8th) 
6 Factors: production interval between physical cleaning, duration of forward flush, duration of 
backwash, pressure during forward flush, type of water used, sequence of forward and backwash 
2 responses: CWF recovery (%), wash water usage. 
 
CS #4.2, pages 48-51. 
Design: 2-level fractional factorial (1/16th)  
7 Factors: nitrogen concentration, phosphorus concentration, photon flux density, magnesium 
concentration, acetate concentration, ferrous concentration, NaCl concentration 
2 responses: Weight content, cellular content. 
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CS #4.3, pages 52-55. 
Design: 2-level fractional factorial (1/2) 
5 Factors: Fibre, F/S, egg white, temperature, time 
4 responses: Hardness, moisture content, water activity, colour. 
 
CS #4.4, pages 55-59. 
Design: 2-level fractional factorial (1/2) 
6 Factors: temperature, oxygen, urea, inhibitor, sulfide, chloride 
1 response: corrosion rate. 
 
CS #4.5, pages 60-62. 
Design: 2-level fractional factorial (1/16th) 
7 Factors: Temperature, particle volume fraction, APPS, pH of nanofluids, elapsed time, 
sonication time, density of nanoparticles 
1 response: Ratio of thermal conductivity of nanofluids to base fluid (Knf/Kf). 
 
CS #4.6, pages 63-65. 
Design: 2-level fractional factorial (1/4) 
5 Factors: Current, gas flow rate, powder feed rate, spray distance, carrier gas flow rate 
3 responses: roughness, crystallinity, purity. 
 
CS #4.7, pages 65-67. 
Design: 2-level fractional factorial (1/16th) 
8 Factors: Canny-Deriche filter, image amplification, edge low threshold, edge high threshold, 
contour closing, polygonal approximation, little chain threshold, slope threshold 
1 response: covering rate 
 
CS #4.8, pages 67-70. 
Design: 2-level fractional factorial (1/16th) 
7 Factors: pHc, T, Fe, N, Age, pHs, M 
2 responses: percentage removal of As(V), percentage removal of As(III). 
 
CS #4.9, pages 70-72. 
Design: 2-level fractional factorial (1/8th) 
7 Factors: temperature, pH agitation, water-to-substrate ratio, volume of inoculum, fermentation 
time, type of co-culture 
1 response: Ferulic acid produced. 
 
CS #5.1, pages 73-75. 
Design: 3-level factorial 
3 Factors: Cementitious materials content, water/cementitious materials ratio, fine/total 
aggregate ratio 
2 responses: average compressive strength, standard deviation of compressive strength. 
 
 
 



205 
 

CS #5.2, pages 75-78. 
Design: 3-level factorial 
3 Factors: Temperature, time, pressure 
5 responses: conversion rate, yield of total distillate fuels, yield of the gasoline fraction, yield of 
the kerosene fraction, yield of the diesel fraction.  
 
CS #5.3, pages 78-81. 
Design: 3-level factorial 
4 Factors: Vibration amplitude, depth of cut, feed rate, cutting speed 
1 response: Surface roughness. 
 
CS #5.4, pages 82-83. 
Design: 3-level factorial 
2 Factors: Agitation speed, catalyst concentration 
1 response: FAME concentration. 
 
CS #5.5, pages 84-86. 
Design: 3-level factorial 
3 Factors: Basal medium, wastewater, cosubstrate type 
2 responses: average compressive strength, standard deviation of compressive strength. 
 
CS #5.6, pages 86-90. 
Design: 3-level factorial 
3 Factors: Cementitious materials content, water/cementitious materials ratio, fine/total 
aggregate ratio 
1 response: Percentage of COD removed. 
 
CS #6.1, pages 91-93. 
Design: RSM - BBD 
3 Factors: Ball diameter, Grinding time, bond work index 
3 responses: coarse, middle, and fine size fractions of coal. 
 
CS #6.2, pages 93-95. 
Design: RSM - BBD  
3 Factors: A/S, slag, sand ratio 
1 response: Frost resistance coefficient. 
 
CS #6.3, pages 96-97. 
Design: RSM - BBD 
3 Factors: Oxidant to sulfur molar ratio, formic acid to oxidant ratio, sonication time 
1 response: Sulfur removal (%). 
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CS #6.4, pages 98-99. 
Design: RSM - BBD  
3 Factors: cutting speed, feed rate, point angle 
1 response: Burr height. 
 
CS #6.5, pages 100-101. 
Design: RSM - BBD  
3 Factors: Ultrasonic power, Irradiating time, pulse duty ratio 
1 response: Ultrasound treatment efficiency. 
 
CS #6.6, pages 102-105. 
Design: RSM - BBD  
6 Factors: Six grades of particle size (A to F) 
1 response: Void content (%). 
 
CS #6.7, pages105-107. 
Design: RSM - BBD  
3 Factors: Surfactant type, mass ratio of fibers/aniline, time of polymerization 
1 response: Conductivity. 
 
CS #6.8, pages 107-110. 
Design: RSM - BBD  
3 Factors: Ferrous iron dosage, hydrogen peroxide concentration, current density 
2 responses: Percentage of color removal, COD removal. 
 
CS #7.1, pages 111-114. 
Design: RSM – rotatable CCD 
3 Factors: Coagulant dosage, flocculant dosage, pH 
2 responses: Turbidity, water recovery 
 
CS #7.2, pages 115-117 
Design: RSM – rotatable CCD 
4 Factors: Treatment time, pH, Cr(VI) concentration, adsorbent dose 
 1 response: Removal of Cr(VI) (%) 
 
CS #7.3, pages 118-120 
Design: RSM – rotatable CCD 
4 Factors: Temperature, sucrose concentration, salt, concentration, time. 
 4 responses: water loss, weight reduction, solid gain, water activity. 
 
CS #7.4, pages 120-123. 
Design: RSM – rotatable CCD 
3 Factors: Rotational speed, plunge depth, dwell time 
1 response: Tensile shear failure load. 
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CS #7.5, pages 123-125. 
Design: RSM – rotatable CCD 
3 Factors: Rotational speed, plunge depth, dwell time 
1 response: Tensile shear failure load. 
 
CS #7.6, pages 125-127. 
Design: RSM – rotatable CCD 
3 Factors: Ethanol concentration, temperature, liquid/solid ratio 
2 responses: Total phenolic content, antioxidant capacity. 
 
CS #7.7, pages 128-130. 
Design: RSM – rotatable CCD 
3 Factors: hydraulic retention time, up flow velocity, influent COD 
1 response: COD removal (%), biogas rate. 
 
CS #7.8, pages 131-132. 
Design: RSM – rotatable CCD 
3 Factors: Temperature, catalyst concentration, molar ratio 
1 response: Biodiesel yield. 
 
CS #7.9, pages 133-135. 
Design: RSM – rotatable CCD 
3 Factors: Coagulant dosage, flocculant dosage, pH 
1 response: Turbidity, sludge volume index (SVI). 
 
CS #7.10, pages 136-138. 
Design: RSM – rotatable CCD 
4 Factors: Methanol/oil molar ratio, catalyst concentration, reaction time, temperature 
1 response: Biodiesel conversion (%). 
 
CS #8.1, pages 139-142. 
Design: RSM – FCD 
5 Factors: Thickness of seismic mass, thickness of beams, area seismic mass, length of beams, 
width of beams 
1 response: Natural frequency. 
 
CS #8.2, pages 142-146. 
Design: RSM – FCD 
4 Factors: Fin height, pin diameter, longitudinal pitch, transverse pitch 
1 response: Thermal resistance, pressure drop. 
 
CS #8.3, pages 146-148. 
Design: RSM – FCD 
3 Factors: Feed rate, cutting speed, depth of cut 
1 response: Delamination factor. 
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CS #8.4, pages 148-150. 
Design: RSM – FCD 
3 Factors: Radius of inner magnet, thickness of yoke, thickness of top plate 
2 responses: Mean and variance of electromagnetic force. 
 
CS #8.5, pages 150-152. 
Design: RSM – FCD 
4 Factors: Oil, biomass, nitrogen, phosphorus 
1 response: Weathered crude oil removal (%). 
 
CS #8.6, pages 153-155. 
Design: RSM – FCD 
3 Factors: Cutting speed, feed, SCEA 
2 responses: Surface roughness, tangential force. 
 
CS #8.7, pages 156-159. 
Design: RSM – FCD 
5 Factors: De/D, a/D, b/D, (h-s)/D, ln Re 
1 response: l/D.  
 
CS #8.8, pages 160-162. 
Design: RSM – FCD 
3 Factors: Time, temperature, enzyme concentration 
4 responses: Turbidity, clarity, viscosity, colour. 
 
CS #8.9, pages 162-164. 
Design: RSM – FCD 
3 Factors: Ethanol concentration, temperature, time 
4 responses: TPC, FRAP, DPPH, Yield. 
 
CS #8.10, pages 165-168. 
Design: RSM – FCD 
4 Factors: Temperature, isopropanol feed concentration, permeate pressure, feed flow rate 
2 responses: Permeation flux, selectivity. 
 
CS #9.1, pages 169-173. 
Design: FFD + CCD 
11 Factors: Glucose, K2HPO4, KH2PO4, MgSO4, Urea, Biotin, CoCl2, NaF, Peptone, 
Hypoxanthine, Initial pH 
1 response: cAMP 
 
CS #9.2, pages 173-176. 
Design: FFD + FCD 
5 Factors: Temperature, GHSV, pre-treatment time, dilution ratio, CH4/O2 ratio 
3 responses: CH4 conversion, C2+ selectivity, C2H4/C2H6 ratio. 
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CS #9.3, pages 177-180. 
Design: FD + CCD 
4 Factors (Nitrogen source): Peptone, yeast extract, ammonium sulfate, urea 
4 Factors (Carbon source): Glycerol, olive oil, hexadecane, glucose 
2 responses: Surface tension, emulsification index (%). 
 
CS #9.4, pages 181-184. 
Design: FFD + FCD 
6 Factors: Flame height, hydrogen flux, taper speed, optic distribution ratio, humidity, 
temperature 
1 response: Isolation. 
 
CS #9.5, pages 184-187. 
Design: FFD + FCD 
4 Factors: Holding time, amount of TiH2, amount of Ca, stirring time for Ca 
3 responses: Relative density, average pore diameter, cell aspect ratio. 
 
CS #9.6, pages 187-189. 
Design: FD + CCD 
3 Factors: Temperature, initial catalyst concentration, vegetable oil molar ratio 
2 responses: Biodiesel purity, biodiesel yield. 
 
CS #9.7, pages 189-194. 
Design: FFD + CCD 
6 Factors: Cel7A, Cel6A, Cel6B, Cel7B, Cel12A, Cel61A 
1 response: Glucose production. 
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About the book 

This book provides a selection of 26 case studies that cover a wide range of DOE applications in 
engineering and science. Only papers where there is a complete set of data available for reanalysis 
were chosen. The selection is not exhaustive and does not cover every discipline of engineering or 
science.  However, readers of the book should get a good sense of the wide application of DOE 
methods, and will try their hand at reanalyzing the published data.  The methods most commonly 
used in the papers deal mainly with factorial designs, fractional factorial designs, and response 
surface methodologies, particularly the use of the central composite and Box-Behnken designs.   

The book is ideal for students who have taken or is taking a course in DOE. It is also useful for 
those who want to learn more about the power of DOE methods or who are looking for research 
ideas. Each dataset is available in print form in the book and available as an Excel file (.xls) and 
as a Design-Expert® file (.dxpx).  Hence this collection of case studies is also be a good resource 
for instructors of DOE. 
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