— in some quantitative man-
6‘ ner such as a 1 to 5 scale.

n“Auw SOFTWARE & ANALYSIS

Success With DOE

Understanding and controlling variables results
in usefulness of statistics.

hen most people hear the word
w “statistics,” their reaction is usually
a mixture of fear, frustration, and
annoyance, especially after enduring the
typical college lecture on the subject.
However, statistics prove useful, especial-
ly for design of experiments (DOE).
Statistics are a tool for extracting infor-
mation from data. Imagine a technical col-
league giving a report on an experiment.
It wouldn’t make sense for him to detail
every measurement. Instead, he delivers a
summary of the overall results. One ques-
tion would be, “What’s the average
result?” Subsequent questions could focus
on the quantity and variability of the
results to build confidence in the data.
Assuming that the experiment has a pur-
pose, it’s possible to accept or reject the
findings. Statistics become not only a tool
for summarization, but for calculating
risks.

The ‘x’ factors
With responsibility for some manu-
facturing systems, one should be aware
of the various factors that affect the
statistics. Some factors are random,
while others are controllable. Control-
lable factors are inputs.
They can be numerical,
such as temperature, or
categorical, such as raw
material suppliers. In
charting an experiment,
an engineer can use the
letter “x” to represent the
sum of all input variables.

Measuring the outputs, !
or responses, must be done

Who ?

Result,

Mark J. Anderson

Quauy

DOE targets sys-
tematic improve-
ments in manufac-
turing, rather than
eliminating specific
causes of process
problems.

Normal distribution
charts depend on
enough data being
collected to deliver
the best possible
average outcome,

Experimenting with
many factors and
variables simultane-
ously is more effi-
cient than experi-
menting with one
factor at a time.

Plotting experimen-
tal results puts
extreme outcomes
in perspective.

PC
Operator

Hands-off (monitor)

Cause for Variability. | Special (upset)

Design of experiments (DOE) and statistical process control
(SPC) are both very dependent on analysis of numbers, but

that’s where the similarity ends. DOE is used as a systematic
tool and SPC is a tool for analyzing specific operations.

Hands-on (change)

o

Engineers can use the letter “y” to repre-
sent the sum of the responses.

There are variables, such as ambient
temperature and humidity, which can’t
be easily controlled or, in some cases, even
identified. These uncontrolled variables,
labeled “z,” can cause variability in
responses. Other sources of variability are
deviations around the set points of the
controllable factors, plus sampling and
measurement eIror.

Furthermore, the system itself may be
made up of parts that exhibit variability.
How can all this variability be dealt with?
By gathering system data, a run chart can
be made to trace the wandering respons-
es. Statistical process control (SPC) offers
more sophisticated tools for assessing the
natural variability of a system. However,
to make systematic improvements, rather
than just eliminating special causes, DOE
must be applied.

Doing DOE is “talking” to a manufac-
turing process. “Questions” are asked by
making changes in inputs, then “listen-
ing” to the response. SPC filters out the
noise caused by variability, but it is a pas-
sive approach. DOE depends on asking
the right questions. Therefore, subject
matter knowledge is an
essential prerequisite for
successful application of
DOE.

Normal distribution

Breakthrough When charting data
from a system, there is

Common (systemic)

often a bell-shaped pat-
tern, called normal dis-
tribution, that emerges.
However, not all distri-
butions will be normal.



For example, if a six-sided die is repeatedly
rolled, the frequency of getting 1 through
6 will be almost equal. This is called uni-
form distribution. If a pair of dice is rolled,
the chances of them averaging to the
extreme values of 1 or 6 are greatly
reduced. The only way to hit an average of
1 from two dice is to roll two ones. On the
other hand, there are three ways an aver-
age of 2 canbe had: 1 and 3, 2 and 2, or 3
and 1. Average values of 1.5, 2.5, and so on,
become possible. An average outcome of
3.5 is the most probable from a pair of dice.
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Rolling one die (bottom row) versus a pair
of dice (pyramid at top).

The shape of the distribution becomes
more bell-shaped as one die is increased to
two. If more than two dice are repeatedly
rolled, the distribution becomes even
more bell-shaped and much narrower. If
five dice are put in a cup, it is increasingly
unlikely it would result in the extreme
averages of 1 or 6—all five dice would have
to come up 1 or 6 respectively.

The dice play illustrates the power of
averaging—the more data collected, the
more normal the distribution of averages,
and the closer one gets to the average out-
come. The normal distribution is “nor-
mal” because all systems are subjected to
many uncontrolled variables. As in the
case of rolling dice, it's unlikely that the
variables will push the response in one
direction or the other. Instead, they will
tend to cancel each other and leave the sys-
tem at a stable level, the mean, with some
amount of consistent variability.

Controltable Factors {x)

Response
Measures
{v)
Not all variables are
uncontrollable, some can
be controlled and repre-
sent regular input to a
system. The responses
obtained from both types
) of variables must be
Uncontrollable Variables {z) measured in some quan-
tifiable manner.
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Factorial design lets an engineer experiment with multiple factors simul-
taneously vs. one-factor-at-a-time (OFAT) method. The result is a more
efficient way to obtain results using fewer experimental runs. The
square and cube on the left demonstrate how as factors are added to
this two-level factorial design method, statistical power is gained quick-
er than the OFAT methods illustrated on the right.
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Standard Run A: B: Time C: Power
Order Order Brand {minutes) (percent)

Y,: Taste
(rating)
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the same preci-
sion for effect
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B added. For exam-

in building the results
of factorial design, an
engineer can get a
quick glance at the
outcome of his experi-
ments. Using coded
factor levels, illustrat-
ed with the “+” and
“.,” next to actual lev-
els, the engineer gets
an idea of highs and
lows in the results.

4()

Regardless of the shape of the original
distribution of “individuals,” the taking
of averages results in a normal distribu-
tion. This comes from the central limit
theorem. As shown in the dice example,
the theorem works imperfectly with a
subgroup of two. For SPC or DOE purpos-
es, averages should be based on subgroups
of four or more. A second aspect of the
central limit theorem predicts the nar-
rowing of the distribution as seen in the
dice example. This is a function of the
increasing sample size for the subgroup—
the more data you collect, the better.

When making a decision about an
experimental outcome, there are two
types of errors minimized:

B Type I. When something seems to
have happened when it really didn't, it is
called a false alarm.

m Type II. Not discovering that some-
thing really happened, a failure to alarm,
when it really did occur.

Playing with variables

The more factors that are tested, the less
the chance is for error. One way to more
accurately test is to use factorial design,
which allows manufacturers to experi-
ment on many factors simultaneously.
The simplest factorial design involves
two factors, each at two levels. Factorial
design provides contrasts of averages,
thus providing statistical power to the
effect estimates. The one-factor-at-a-time
(OFAT) experimenter must replicate runs
to provide equivalent power. The end
result for a two-factor study is that to get

more

ple, with three
factors, the factorial design requires only
eight runs vs. 16 for an OFAT experiment
with equivalent power. The relative effi-
ciency of factorial design is now twice that
of OFAT for equivalent power. The relative
efficiency of factorials continues to
increase with every added factor.

Factorial design has two additional
advantages from OFAT:

B Wider inductive basis—it covers a
broader area from which to draw infer-
ences about a manufacturing process.

m [t reveals interactions of factors. This
often proves to be the key to understand-
ing a process.

The basic principles of two-level facto-
rial design can be explained in the exam-
ple of making microwave popcorn.

It's nearly impossible to get every ker-
nel of corn to pop. Often, there’s a con-
siderable number of inedible kernels, or
“bullets,” at the bottom of the bag. What
causes this loss of popcorn yield? In this
example, only three factors were studied:
brand of popcorn, time of cooking, and
microwave power setting. Brand is a cate-
gorical factor—one type of popcorn or
another. Time is a numerical factor
because it can be adjusted to any level.
Power could be set to any percent of the
total available, so it’s also a numerical fac-
tor. If this experiment is attempted, do
some range finding on the high level for
time. Using the minus (-) and plus (+)
symbols to designate low and high levels,
makes sense for numerical factors, pro-
vided the lesser value is made the low
level. The symbols for categorical factor
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levels are arbitrary.

Two responses were considered for the
experiment on microwave popcorn: taste
and bullets. Taste was determined by a
panel of testers who rated the popcorn on
a scale of 1, worst, to 10, best. The ratings
were averaged and multiplied by 10. This
is a linear transformation that eliminates
a decimal point to make data entry and
analysis easier. It does not affect the rela-
tive results. The second response, bullets,
was measured by weighing the unpopped
kernels—the less the weight, the better.

The results from doing all combina-
tions of the chosen factors, each at two
levels, were taste ranging from a 32 to 81
rating, and bullets from 0.7 to 3.5 ounces.
The latter result came from a bag with vir-
tually no popped corn, barely enough to
get a taste. Such a setup is one to avoid.
The run order was randomized to offset
any lurking variables, such as machine
warm-up and degradation of taste buds.

Building and analyzing
The first item to list in the results of this
popcorn experiment is the standard
order. The mathematical symbols of
minus and plus, the “coded factor lev-
els,” are next to the actual levels at
their lows and highs, respectively. To
take advantage of established meth-
ods for analysis, it’s helpful to resort
the test matrix on the basis of stan-
dard order and list only the coded
factor levels. Dispense with the
names of the factors and responses,
which get in the way of the calcula-
tions, and show only their mathe-
matical symbols.

A column labeled “Standard,” plus
the columns for brand, time, and
powet, form a template that can be
used for any three factors tested at
two levels. The standard layout starts
with all low levels of the factors and
ends with all high levels. The first fac-
tor changes sign every other row, the
second factor every second row, the third
every fourth row, and so on, based on
powers of 2. You can extrapolate the pat-

tern to any number of factors, or research
in statistical handbooks.

The analysis can begin by investigating
the main effects on the first response,
taste. It helps to view test results in a cubi-
cal factor space.

The right side of the cube contains all
the runs where brand is at the high level,
vs. the left side where the factor is held at
the low level. Average the highs and the
lows, and determine the difference or
contrast. This is the effect of the brand fac-
tor. Mathematically, the calculation of an
effect is expressed as:

Sv, S

Effect=

n n.

The n’s refer to the number of data points

collected at each level. The Y’s refer to the
associated responses.

Continue the analysis by contrasting
the averages from top to bottom and back
to front to get the effects of time and
power, respectively.

Before jumping to conclusions, it’s
important to consider the effects caused by
interactions of factors. The full-factorial
design allows estimate of all three two-fac-
tor interactions: brand-time, brand-power,

)

—
N

Brand

Cube plot of taste ratings with focus on
brand (Factor A).
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Some experiments will
deliver extreme results
in the combination of
factors. To get an idea
of whether seeming
extremes are the
norm, it’s best to plot
all results on a half-
normal distribution
chart, which is based
on the positive half of
a full-normal curve.

| Time-Power

i o N—

20 25

Effect

and time-power; and the three-factor
interaction of brand-time-power. Includ-
ing the main effects, caused by brand,
time, and power, there are seven effects,
the most that can be estimated from the
eight-run factorial design, because 1
degree of freedom is used to estimate the
overall mean.

Once the effects have been listed, it
becomes a matter of computing the
effects using the general calculation of
an effect. On an absolute value scale,
some of the other interaction effects are
extremely low or extremely high. Could
such extremes be chance occurrences
caused by normal variations in the pop-
corn, the tasting, the environment, and
the like? The answer to this question is
found in plotting the normal distribu-
tion.

Plotting results
Before plotting the effects, it helps to

convert them to absolute values, a
more sensitive scale for detection of
significant outcomes. The absolute
value scale is accommodated via a
variety of normal papers called the
half-normal, which is based on the
positive half of the full normal curve.
The vertical axis of the half-normal
plot displays the cumulative proba-
bility of getting a result at or below
any given level. However, the proba-
bility scale for the half-normal is
adjusted to account for using the
absolute value of the effects.

Before plotting data on the proba-
bility paper:

m Sort the data points in ascend-
ing order.

®m Divide the O to 100% cumu-
lative probability scale into equal
segments.

B Plot the data at the midpoint of
each probability segment.

After that is complete, plot the
absolute values of the effect on the x-axis
vs. the cumulative probabilities on the
specially scaled y-axis on half-normal
paper. Half-normal plots can be generat-
ed using statistical software.

The pattern that can result typically
has the majority of points in a line ema-
nating from the origin, followed by a
gap, and then one or more points fall off
to the right of the line. The half-normal
plot of effects makes it very easy to see at
a glance what's significant. This same
procedure can be applied to the second
response for microwave popcorn, the
weight of the bullets.

To protect against spurious outcomes,
it is important to verify the conclusions
drawn from the half-normal plots by
doing an analysis of variance and the
associated diagnostics of residual error.
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Interaction of time (B) versus power (C) on popcorn

taste.

Interpretation

Notice that the effect of time
depends on the level of power. For
example, when power is low
(minus), the change in taste is small-
-from 74.5 to 75.5. But when power
is high (plus), the taste goes very bad-
-from 79 to 37. This is much clearer
when graphed (see the “Interactions

power” graph). Two
lines appear on the
plot, bracketed by
least significant dif-
C- ference (LSD) bars
at either end. The
lines are far from
parallel, indicating
quite different
effects of changing
the cooking time.
When power is low
C+ (C-), the line is flat,
which indicates
that the system is
unaffected by time
Ea (B). But when
power goes high
(C+), the line angles
steeply downward,
indicating a strong
negative effect due to the increased
time. The combination of high time
and high power is bad for taste. The
average result is only 37 on the 100-
point rating scale. The reason is sim-
ple: the popcorn burns. The solution
to this problem is also simple: turn
off the microwave sooner. Notice
that when the time is set at its low

e
6.00

level (B-), the taste remains high
regardless of the power setting (C).
The LSD bars overlap at this end of
the interaction graph, which implies
that there is no significant difference
in taste.

Interactions occur when the effect
of one factor depends on the level of
the other. They cannot be detected
by OFAT experimentation so don't
be surprised if previously undetect-
ed interactions are uncovered when
running a two-level design. ]

From “DOE Simplified: Practical
Tools for Effective Experimenta-
tion,” Mark J. Anderson and Patrick J.
Whitcomb. Copyright 2000, Productiv-
ity Inc., P.O. Box 13390, Portland, OR
97213. Contact at (800) 394-6868 or
at www.productivity.inc. Reprinted
with permission.
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