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_ DOE provi

uality managers who understand how to apply statis-

tical tools for design of experiments (DOE) are better

able to support use of DOE in their organizations. Ul-

timately. this can lead to breakthrough improvements
in product quality and process efficiency.

DOE provides a cost-effective means for solving problems
and developing new processes. The simplest, but most power-
ful, DOE tool is two-level factorial design. where each input
variable is varied at high (+) and low (-) levels and the output
observed for resultant changes. Statistics can then help deter-
mine which inputs have the greatest effect on outputs. For ex-
ample, Figure | shows the results for a full two-level design on
three factors affecting bearing life. Note the large increase at
the rear upper right corner of the cube.

In this example, two factors, heat and cage, interact to pro-
duce an unexpected breakthrough in product quality. One-fac-
tor-at-a-time (OFAT) experimentation will never reveal such
interactions. Two-level factorials, such as the one used in Fig-
ure |, are much more efficient than OFAT because they make
use of multivariate design. It's simply a matter of parallel pro-
cessing (factorial design) vs. serial processing (OFAT). Further-
more, two-level factorials don’t require you to run the full
number of two-level combinations (2 #*"#%) particularly when
you get to [ive or more factors. By making use of fractional
designs, the two-level approach can be extended to many fac-
tors without the cost of hundreds of runs. Therefore, these DOEs
are ideal for screening many factors to identify the vital few
that significantly affect your response.

Such improvements will obviously lead to increased market
share and profit. So why don’t more manufacturers use DOE?
In some cases, it's simple ignorance. but even when companies
provide proper training, experimenters resist DOE because it
requires planning. discipline and the use of statistics. Fear of
statistics is widespread, even among highly educated scientists
and managers. Quality professionals can play a big role in help-
ing their colleagues overcome their reluctance.

Using DOE successfully depends on understanding eight fun-
damental concepts. To illustrate these keys to success, we'll look
at a typical example: reducing shrinkage of plastic parts from

n injection molding process. The molding case will demon-
strate the use of fractional two-level design.

1. Set good objectives

Before you can design an experiment, you must define its
objective. The focus of the study may be to screen out the fac-
tors that aren’t critical to the process, or it may be to optimize a
few critical factors. A well-defined objective leads the experi-
menter to the correct DOE.

In the initial stage of process development or troubleshoot-
ing, the appropriate design choice is a fractional two-level fac-
torial. This DOE screens a large number of factors in a minimal
number of runs. However, if the process is already close (o op-
timum conditions, then a response surface design may be most
appropriate. It will explore a few factors over many levels.

If you don’t identify the objectives of a study, you may pay
the consequences—trying to study too many or too few factors,
not measuring the correclt responses, or arriving at conclusions
that are already known,

Vague objectives lead to lost time and money, as well as
frustration, for all involved. [dentifying the objective upfront
builds a common understanding of the project and expectations
for the outcome.

In our case study of the injection molder, management wants
to reduce variation in parts shrinkage. If the shrinkage can be
stabilized. then mold dimensions can be adjusted so the parts
can be made consistently.
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Table 1: Factors for a DOE Case Study on a Molding Process

Factor Name Units Low Level High Level
A: Mold Temperature Degrees F 130 180

B: Holding Pressure PSIG 1200 1500

C: Booster Pressure PSIG 1500 1800

D: Moisture Percent 0.05 0.15

E: Screw Speed Inches/sec 1.5 4.0

F: Cycle Time Seconds 25 30

G: Gate Size Mils 30 50

Figure 1: Bearing life
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The factors and levels to be studied
are as shown in Table 1.

The experimenters have chosen a two-
level factorial design with 32 runs. A full
set of combinations would require 128
runs (27), so this represents a 1/4th frac-
tion.

2. Measure responses (uantitatively

Many DOEs fail because their re-
sponses can’t be measured quantitatively.
A classic example is found with visual
inspections for quality. Traditionally,
process operators or inspectors use a
qualitative system to determine whether
a product passes or fails. At best, they may
have boundary samples of minimally ac-
ceptable product. Although this system
may be OK for production, it isn’t pre-
cise enough for a good DOE. Pass/fail
data can be used in DOE, but to do so is
very inefficient. For example, if your
process typically produces a 0.1 percent
defect rate, you would expect to find five
out of 5,000 parts defective. In order to
execute a simple designed experiment that
investigated three factors in eight experi-
mental runs on such a process, you would
need to utilize a minimum of 40,000 parts
(8 x 5,000). This would assure getting
enough defects to judge improvement, but
at an exorbitant cost.

For the purposes of experimentation,

Quality Digest/July 1999

arating scale works well. Even crude scal-
ing, from 1 to 5, is far better than using
the simple pass/fail method. Define the
scale by providing benchmarks in the
form of defective units or pictures. Train
three to five people to use the scale. Dur-
ing the experiment, each trained inspec-
tor should rate each unit. Some inspectors
may tend to rate somewhat high or low,
but this bias can be removed in the analy-
sis via blocking (see Key 5, “Block out
known sources of variation”). For a good
DOE, the testing method must consis-
tently produce reliable results.

In the case study on injection mold-
ing, the experimenters will measure per-
cent shrinkage at a critical dimension on
the part. This is a quantitative measure-
ment requiring a great deal of precision.
The short-term variation in parts can be
dampened by measuring several and in-
putting the average. Other responses could
be included, such as counts of blemishes
and ratings of other imperfections in sur-
face quality.

3. Replicate to dampen uncontrollable
variation (noise)

The more times you replicate a given
set of conditions, the more precisely you
can estimate the response. Replication im-
proves the chance of detecting a statisti-
cally significant effect (the signal) in the
midst of natural process variation (the
noise). In some processes, the noise
drowns out the signal. Before you do a
DOE, it helps to assess the signal-to-noise
ratio. Then you can determine how many
runs will be required for the DOE. You
first must decide how much of a signal
you want to be able to detect. Then you
must estimate the noise. This can be de-
termined from control charts, process ca-
pability studies, analysis of variance
(ANOVA) from prior DOEs or a best
guess based on experience.

The statisticians who developed two-

level factorial designs incorporated “hid-
den” replication within the test matrixes.
The level of replication is a direct func-
tion of the size of the DOE. You can use
the data in Table 2 to determine how many
two-level factorial runs you need in order
to provide a 90-percent probability of de-
tecting the desired signal. If you can’t af-
ford to do the necessary runs, then you
must see what can be done to decrease
noise. For example, Table 2 shows a mini-
mum of 64 runs for a signal-to-noise ra-
tio of 1. However, if you could cut the
noise in half, the signal-to-noise ratio
would double (to 2), thus reducing your
runs from 64 to 16. If you can’t reduce
noise, then you must accept an increase
in the detectable signal (the minimum ef-
fect that will be revealed by the DOE).

You can improve the power of the
DOE by adding actual replicates where
conditions are duplicated. You can’t just
get by with repeat samples or measure-
ments. The entire process must be re-
peated from start to finish. If you do
submit several samples from a given ex-
perimental run, enter the response as an
average.

For our case study on injection mold-
ing, control charts reveal a standard de-
viation of 0.60. Management wants to
detect an effect of magnitude 0.85. There-
fore, the signal-to-noise ratio is approxi-
mately 1.4. The appropriate number of
runs for this two-level factorial experi-
ment is 32. We decide not to add further
replicates due to time constraints, but sev-
eral parts will be made from each run. The
response for each run becomes the aver-
age shrinkage per part, thus dampening
out variability in parts and the measure-
ment itself.

4. Randomize the run order

The order in which you run the experi-
ments should be randomized to avoid in-
fluence by uncontrolled variables such as
tool wear, ambient temperature and
changes in raw material. These changes,
which often are time-related, can signifi-
cantly influence the response. If you don’t
randomize the run order, the DOE may
indicate factor effects that are really due
to uncontrolled variables that just hap-
pened to change at the same time. For ex-
ample, let’s assume that you run an
experiment to keep your copier from jam-
ming so often during summer months.

Figure 2: Interaction plot for CD
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During the day-long DOE, you first run
all the low levels of a setting (factor “A”),
and then you run the high levels. Mean-
while, the humidity increases by 50 per-
cent, creating a significant change in the
response. (The physical properties of pa-
per are very dependent on humidity.) In
the analysis stage, factor A then appears
to be significant, but it’s actually the
change in humidity that caused the effect.
Randomization would have prevented this
confusion.

The injection molders randomized the
run order within each of several machines
used for their DOE. The between-machine
differences were blocked.

9. Block out known sources of variation

Blocking screens out noise caused by
known sources of variation, such as raw
material batch, shift changes or machine
differences. By dividing your experimen-
tal runs into homogeneous blocks, and
then arithmetically removing the differ-
ence, you increase the sensitivity of your
DOE.

Don’t block anything that you want to
study. For example, if you want to meas-
ure the difference between two raw ma-
terial suppliers, include them as factors
to study in your DOE.

In the injection molding case study,
management would like the experiment-
ers to include all the machines in the DOE.
There are four lines in the factory, which
may differ slightly. The experimenters di-
vide the DOE into four blocks of eight
runs per production line. By running all
lines simultaneously, the experiment will
get done four times faster. However, in
this case, where the DOE already is frac-
tionated, there is a cost associated with
breaking it up into blocks: The interac-

Table 2: Number of Runs as a

Function of Signal-to-Noise Ratio

Signal-to-Noise Minimum
Ratio (A/G) Number of Runs
1.0 64
1.4 32
2.0 16
2.8 8

tion of mold temperature and holding
pressure can’t be estimated due to
aliasing. Aliasing is an unfortunate side
effect of fractional or blocked factorials.

6. Know which effects (if any)
will he aliased

An alias indicates that you’ve changed
two or more things at the same time in
the same way. Even unsophisticated ex-
perimenters know better, but aliasing is
nevertheless a critical and often over-
looked feature of Plackett-Burman,
Taguchi designs or standard fractional
factorials.

For example, if you try to study three
factors in only four runs—a half-frac-
tion—the main effects become aliased
with the two-factor interactions. If you’re
lucky, only the main effects will be ac-
tive, but more likely there will be at least
one interaction. The bearings case (Fig-
ure 1) can be manipulated to show how
dangerous it can be to run such a low-reso-
lution fraction. Table 3 shows the full-fac-
torial test matrix. In this case, the
interaction AB is very significant, so it’s
included in the matrix. (Note that this
column is the product of columns A and
B.) The half-fraction is represented by the
shaded rows—the responses for the other
runs have been struck out. Observe that
in the highlighted area the pattern of the
minuses (lows) and pluses (highs) for AB
is identical to that of factor C. Put another
way, C = C + AB, where the equal sign
indicates aliasing. By going to the half-
fraction, we don’t know whether the ef-
fect is the result of C, AB or both.

Aliasing can be avoided by doing only
full two-level factorials or high-resolution
fractionals, which isn’t practical. Plackett-
Burman or Taguchi designs are often very
low in resolution and therefore give very
misleading results on specific effects. If
you must deal with these nonstandard de-
signs, always do a design evaluation to
see what’s aliased. Good DOE software

will give you the necessary details, even
if runs are deleted or levels changed.
Then, if any effects are significant, you
will know whether to rely on the results
or do further verification.

The injection molding study is a frac-
tional factorial design with mediocre reso-
lution: Several two-factor interactions are
aliased. A design evaluation provides the
specifics: CE = CE + FG, CF = CF + EG,
CG = CG + EF. If you evaluate the ef-
fects matrix for CE vs. FG, you will see a
perfect correlation. The plus symbol in the
alias relationship tells you that the calcu-
lated effect could be due to CE plus FG.
If these or any of the other aliased inter-
actions are significant, further work will
be needed.

1. Do a sequential series of experiments

Designed experiments should be ex-
ecuted in an iterative manner so that in-
formation learned in one experiment can
be applied to the next. For example, rather
than running a very large experiment with
many factors and using up the majority
of your resources, consider starting with
a smaller experiment and then building
upon the results. A typical series of ex-
periments consists of a screening design
(fractional factorial) to identify the sig-
nificant factors, a full factorial or response
surface design to fully characterize or
model the effects, followed up with con-
firmation runs to verify your results. If
you make a mistake in the selection of
your factor ranges or responses in a very
large experiment, it can be very costly.
Plan for a series of sequential experiments
so you can remain flexible. A good guide-
line is not to invest more than 25 percent
of your budget in the first DOE.

8. Riways confirm critical findings

After all the effort that goes into plan-
ning, running and analyzing a designed
experiment, it’s very exciting to get the
results of your work. There is a tendency
to eagerly grab the results, rush out to pro-
duction and say, “We have the answer!”
Before doing that, you need to take the
time to do a confirmation run and verify
the outcome. Good software packages
will provide you with a prediction inter-
val to compare the results within some
degree of confidence. Remember, in sta-
tistics you never deal with absolutes—
there is always uncertainty in your
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Table 3: Test Matrix for Bearings Case (Darker Shaded Areas are Half-Fraction)

Factor A: Factor B: Interaction AB Factor C: ' Response: Life
Osculation Heat Cage (Hours)
PN ] a1 il BT e
Wl b i (e, ST oo gt
~1 +1 { =1 ~1 i 26
+1 +1 +1 -1 - §—5
-1 ~i - | +1 +1 19 0
1 fiagm— 1 +1 =
-1 +1 -1 +1 16 e
+1 + B S 128

recommendations. Be sure to double-
check your results.

In the injection molding case, the results
of the experiment revealed a significant in-
teraction between booster pressure and
moisture (CD). The interaction is not aliased
with any other two-factor interactions, so
it’s a clear result. As shown by the flat line
on figure 2, shrinkage will be stabilized by

keeping moisture low (D-). This is known
as a robust operating condition.

Contour graphs and 3-D projections
help you visualize your response surface.
To achieve robust operating conditions,
look for flat areas in the response sur-
face.

The 3-D surfaces are very impressive, but
they’re only as good as the data generated to

create the predictive model. The results still
must be confirmed. If you want to generate
more sophisticated surfaces, you should
follow up with response surface methods
for optimization. These designs require at
least three levels of each factor, so you
should restrict your study to the vital few
factors that survive the screening phase.

Prometing DOE

Design of experiments is a very pow-
erful tool that can be utilized in all manu-
facturing industries. Quality managers
who encourage DOE use will greatly in-
crease their chances for making break-
through improvements in product quality
and process efficiency.
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