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esign of experiments (DOE)
techniques provide an effi-
cient means for you to opti-
mize your process. But, you
shouldn’t restrict your studies only to
process factors. Adjustments in the for-
mulation may prove to be beneficial, as
well. A simple but effective strategy of
experimentation involves:

1. Optimizing the formulation via

mixture design; and
2. Optimizing the process with factorial
design and response surface methods (7).
This article shows you how to apply
DOE methods to your formulation. A case
study gives you a template for action.

Why factorial methods may fail

Industrial experimenters typically
turn to two-level factorials as their first

‘attempt at DOE. These designs consist

of all combinations of each factor at its
high and low levels. With large numbers
of factors, only a fraction of the runs
need to be completed to produce esti-
mates of main effects and simple inter-
actions. However, when the response
depends upon proportions of ingredi-
ents, such as in chemical or food formu-
lations, factorial designs may not make
sense. For example, look at what hap-
pens with experiments on lemonade
(Table 1).

Run 1 (both factors low) and Run 4
(both factors high) taste the same. It
makes more sense to look at taste as a
function of the proportion of lemons to
water, not the amount. Mixture design
accounts for the dependence of re-

sponse on proportionality of ingredi-
ents. If you experiment on formulations
where only proportions matter, not the
amount, factorials won’t work. Use a
mixture design.

Assessing mixtures

To illustrate how to apply mixture
design, let’s look at a relatively simple
study that involves three surfactants
(see Table 2) (2). The experimenters
measured the effects of these mixture
components on an aqueous dispersion of
polymeric nanospheres. They also stud-
ied the film-forming properties of this
pharmaceutical preparation.

Table 3 details the experimental de-
sign, a second-degree augmented sim-
plex lattice (3). The scale goes from zero
to one based on the relative proportions
of the three ingredients. The experi-
menters held the total of the surfactants
and all other ingredients at fixed levels.

Figure 1 shows the location of the
points in the mixture space. (Ignore the
contours for now.) In this triangular lay-
out, the apexes represent the use of only
a single, specific surfactant. Binary
blends, which provide estimates of sec-
ond-order effects, occur at the mid-
points of the sides on the triangle. The
points in the interior, which the experi-
menters added to augment the design,
represent three-part blends. The cen-
troid point contains equal amounts of all
three ingredients. The interior points be-
tween the centroid and each apex repre-
sent axial check blends. These three-
component mixtures contain two-thirds
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of one respective component and
one-sixth each of the other two
components. The individual propor-
tions go from zero to one from base
to apex in each of the three axes.

The design includes one replicate
of the centroid blend. This provides
only a single statistical measure of
pure error (one “degree of freedom”
for estimation). We recommend that
you also replicate the single-compo-
nent runs to get a worthwhile esti-
mate of pure error.

You can introduce constraints on
individual components. However,
this adds complications that go be-
yond the scope of this article; Ref. 3
provides the mathematical details.
Software packages can set up opti-
mal designs within constrained mix-
ture regions (4).

Creating a
mathematical model

The experimenters desired mini-
mal particic size for better disper-
sion. They also hoped to minimize
the glass transition temperature for
improved film forming. The two re-
sponses were fitted via least-
squares regression to canonical
mixture models. These polynomials
account for the overall constraint
that all mixture components must
sum to one. They can be recognized
by lack of an intercept. In an uncon-
strained mixture, first-order coeffi-
cients indicate response for the pure
components. If a linear model
proves sufficient, you can use these
terms to determine the relative effi-
cacy of each material. If higher-
order terms must be employed,
however, the picture gets compli-
cated. The second-order terms in
mixture models, such as AB, reveal
interactions. For responses where
higher is better, positive interaction
coefficients indicate synergism
while negative interaction coeffi-
cients signify antagonism. For re-
sponses where lower is better, such
as the two responses in this case,
the inverse is true: positive coeffi-
cients on interactions demonstrate

antagonism and negative coeffi-
cients show synergism. In this case,
by augmenting their design with in-
terior points, the experimenters ran
enough unique blends to allow esti-
mation of a third-order term, ABC.
This term, called a “special cubic,”
reveals any three-component inter-
action. When you work with chemi-

cal formulations, be prepared for
complex interactions of this degree.
Choose a design accordingly.

Table 4 shows the mixture mod-
els for particle size and glass transi-
tion temperature. The model coeffi-
cients came from a statistical soft-

ware package that supports mixture
design. Case statistics revealed that
Blend 10 produced an unexpectedly
low particle size (see Table 3). The
statistics show this to be a highly
significant outlier. However, be-
cause the original article does not
reveal a special cause for this un-
usual deviation, we decided to keep
the suspected outlier. If you uncover
a questionable point, be sure to look
for a possible reason, such a break-
down in equipment or mistake in
making up the blend. Often, the
cause of an outlier can be simply an
error in data entry. If you cannot
find a cause, be very cautious about
modeling the response without that
questionable point. It may pay to an-
alyze the responses with and with-
out the questionable point. If it
makes no material impact on your
decisions (which is what we ob-
served in the particle-size response),
keep the point. Also, we saw no sign
of any outliers in the other response,
glass transition temperature. This
makes it less likely that there’s any-
thing unusual about Blend 10.

Optimizing via
graphical techniques
Given a statistically significant

Table 1. Misleading factorial design for lemonade.

Table 2. Mixture components studied
in surfactant experiment.
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fit, the mixture models become the W Figure 5.
basis for response surface graphs. Overlay contour
These graphs provide valuable in- A (100} plot.of particle

] . . size and glass
sights about your formulation. Fig- transition
ures 1 and 3 depict contour plots for temperature.
particle size and glass transition
temperature, respectively, from the
surfactant mixtures. The three-di-
mensional representations (Figures 2
and 4) make it clear that particle size
and glass transition temperature both
can be minimized by going to a
blend that is rich in Surfactant A
(Poloxamer 188 NF). Figure 5 shows
the contour plots overlaid with hypo-
thetical maximum specifications.
Areas not meeting maximum specifi-
cations are shaded, while the clear
area meets specifications. As shown
in the figure, this overlay plot re-
veals operating windows where you
can hit the “sweet spot” and meet all B (100) A(0) C {100}
customer specifications. When you
work with more than three compo-
nents or more than two process fac-
tors, it may become difficult to find  merical search algorithms then be- this phase of the analysis. For for-
the window because you must search come a necessity (35). mulations, it’s easy. Just enter a cost
through multidimensional space. Nu- Cost should be considered during equation as a function of the compo-

Table 3. Design matrix and data for surfactant study
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nent levels. Then, treat cost as an
additional response on your overlay
plot or numerical multiple-response
optimization.

Relying on ratios

As an alternative to working in
proportional scale and using mixture
models, consider using ratios. For
example, after settling on a surfac-
tant, the pharmaceutical experi-
menters performed a standard re-
sponse-surface study at varying ra-
tios. of polymer to surfactant while
simultaneously varying the ratio of
solid to liquid. With mixture vari-
ables expressed as ratios, you can
add in to your experiment process
factors such as agitation rate, tem-
perature, and the like. When setting
up ratios, be careful to follow these
rules:

1. The number of ratios must be one
less than the number of components.

2. Each ratio must include at least
one component in at least one other
ratio.

For more details on using ratios,
see Ref. 3. The methods for combin-
ing process factors and mixture
components remain relatively unde-
veloped, however.

Other caveats

Mixture design is appropriate only
when your response varies as a func-
tion of the proportions, not the total
amount, of ingredients. In some
cases, such as application of coat-
ings, this assumption cannot be satis-
fied and you must use an alternative
approach for your DOE. Cornell (3)
provides details on “mixture amount”
designs. You also can use the ratio
approach outlined above with
amount added as a separate factor.

In addition, you must consider
whether it’s reasonable to vary each
ingredient over a range of 0 to
100%. In many situations, you will
need to impose constraints on one of
more of the ingredients or on some
combination of them. Good soft-
ware for mixture design should easi-
ly accommodate a variety of con-

straints. Your constraints may form
complex regions that cannot be cov-
ered by the standard mixture de-
signs; so, you should select software
that can set up optimal designs that
will fit the polynomial you antici-
pate will be needed to model the re-
sponse.

Finally, if you will be focusing
primarily on process factors and wish
to include concentration of a single
chemical, then feel free to use a stan-
dard factorial or response surface de-
sign. For example, you might study
time, temperature, and concentration

in a 23 factorial with 8 runs. This
keeps things as simple as possible.

A powerful tool

DOE methods can be applied
to formulations if you account
for the unique aspects of mix-
tures. By using appropriate
designs, you greatly accelerate
your exploration of alternative
blends. Then, with the aid of re-
sponse surface graphics based
on mixture models, you can
discover the winning component
combination.

Table 4 . Mathematical predictive models for surfactant study.
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