CONTROL & INSTRUMENTATION

Design of experiments strategies

mentation requires changing only

one factor at a time (OFAT).
However, the OFAT approach does not
provide data on interactions of factors, a
likely occurrence with processes.

Statistically based design of experi-
ments (DOE) provides valid process mod-
els. The two-phase strategy of DOE is
simple and straightforward:

Phase 1. Use two-level factorial
designs as screening tools to separate the
vital few factors (including interactions)
from those with no significant impact.

Phase 2. Do an in-depth investigation
of the surviving factors. Generate a
response surface map and move the
process to the optimum location.

These sections discuss the two phas-
es of DOE.

m Phase 1: Screening with two-level
factorials. Two-level factorial design
involves simultaneous adjustment of experi-
mental factors at high and low levels. By
restricting the tests

The traditional approach to experi-

equals the number of factors to test. For
example, 7 factors can be tested in 8 runs, or
15 factors can be tested in 16 runs. However,
these “saturated” designs provide very poor
resolution because main effects will be con-
fused with two-factor interactions. Running

low resolution designs should be avoided.

The run order of the entire design
should be randomized. Otherwise, lurking
factors, such as ambient temperature or

catalyst degradation, could confound the
factor estimates. After completing the
experiments, standard statistical analyses
provide significance tests on the overall
outcome and individual effects. Textbooks
provide hand-calculation schemes for
doing analysis of two-level factorials, but it
is much easier to let a statistical software
program do this work.

To be conservative, consider putting a
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TABLE 1. HIGH-RESOLUTION, TWO-LEVEL FRACTIONAL FACTORIALS.

Fraction applied No. runs,
fraction design

Wy (27) 16 (251)
1y (2) 32 (261)
Yy (27 32 (272)
g (29) 32 (283)
g (279) 64 (2%3)
e (2) 64 (2104)
g (29) 64 (2115)

Temperature (X,),°C  Catalyst (X;), % Conversion (Y,), % Activity (Yy)

74 53.2
51 62.9
88 93.4
70 62.6
7 57.3
9 67.9
66 59.8
97 67.8
81 59.2
75 60.4
76 59.1
83 60.6
80 60.8
91 58.9
76 53.6
79 65.9
85 60.0
97 60.7
95 57.4
81 63.2

(o only W levels, I TABLE 2. EXPERIMENTAL DATA FOR EXAMPLE.
experiments is - . .
mir';miz s Tho con. | Ponttype  Time (X,), min
e ides tha cmen, | Factoria 40.00 80.00 2.00
force for process | Factorial 50.00 80.00 2.00
improvement. This Factorial 40.00 90.00 2.00
parallel testing | Factorial 50.00 90.00 2.00
scheme is more effi- | Factorial 40.00 80.00 3.00
cientthan OFAT. To | Factorial 50.00 80.00 3.00
obtain high-resolu- | Factorial 40.00 90.00 3.00
tion of effects, run | Fagtorial 50.00 90.00 3.00
full factorials for four | Genter 45.00 85.00 250
or f‘;wgrl fa‘;"”f{ Center 45.00 85.00 2.50
hig e olution | Center 45.00 85.00 2.50
fractional design Center 45.00 85.00 2.50
options for five or | Center 45.00 85.00 2.50
more factors. Center 4500 8500 250
Designs can be | Axial 36.59 85.00 2.50
constructed with a | Axial 53.41 85.00 2.50
textbook or statisti- | Axial 45.00 76.59 2.50
cal softv_vare. Axial 45.00 93.41 2.50
Designs  are | Axjal 45.00 85.00 1,66
available with as litle | pyig) 45.00 85.00 3.34
as k+1 runs, where k
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Fig. 1. A 2-D contour plot.
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Fig. 2. A 3-D contour plot.
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centerpoint in the design. This is a set of conditions at the mid-
point of every factor level. For example, if the design requires that
time vary from 40 min to 50 min while the temperatures vary from
80°C to 90°C, then the centerpoint setting is 45 min at 85°C. To
get an estimate of pure error, the centerpoint is repeated several
times, mixed randomly with the remaining design points.

Each time the centerpoint is run, all of the steps are repeat-
ed. Including reanalyzed or resampled data in the method as
replicates will not produce a fair estimate of the pure error.

The “curvature” in the system can be estimated with center-
points. In most cases curvature is not significant, which means
that the two-level design is reliable. However, if the system is
close to peak performance, there will be significant curvature,
which indicates that the response behaves in a non-linear fash-
ion. Then, one needs to run additional factor levels and employ
response surface methods. ‘

m Phase 2. Optimization via response surface methods.
As the optimum is approached, it becomes necessary to do more
than two levels of the factors that survive the screening phase.
The tool for Phase 2 is response surface methodology (RSM).

Begin by focusing the study on a specific region of interest,
identified by prior experimentation as a likely location for the opti-
mum. The narrower the factor ranges are set, the more likely one
will be able to approximate the surface with a simple polynomial
model. In most cases, a quadratic equation proves to be suffi-
cient. Equation 1 shows a quadratic equation for two factors.

Y =Bg +BXq+BaXg +B1aXiXa + By X5 +BopX3 (1)

where:

Y = Measured response or outputs such as yield, efficiency,
conversion (Y4) and activity (Y5);

X = Input factors such as time (X;), temperature (X,) and
catalyst (X3);

B = Mathematical model coefficients assigned to input factors.

A three-level factorial design provides a sufficient number of
experiments to fit a quadratic model. It works well for two factors.

However, for three factors the three-level design requires 27
experiments, an excessive number. The central composite
design (CCD) is a better choice for response surface experi-
ments with three or more factors. The CCD is composed of a
core two-level factorial surrounded by axial points.

Fig. 1 shows the points’ layout for a central composite design
on two process factors. Larger CCDs can be divided between
two or more blocks if all of the experiments cannot be run togeth-
er due to lack of time, material or equipment availability.

For example, one could run the factorial portion and then fol-
low-up with the axial points. By running centerpoints with the fac-
torial, one can check for curvature in the response. If there is no
significant curvature, the axial points need not be run. More cen-
terpoints should be included with the axial points to tie the blocks
together. Then, any constant difference in response due to
blocks can be arithmetically removed.

Montgomery'! and Myers and Montgomery?2 provide details on
CCDs and other designs for response surface methods.

Statistical software is handy for setting up RSM designs, and
a necessity for analysis. These software packages provide the
means to fit the response data to the quadratic polynomial model.
A standard analysis of variance (ANOVA) indicates if the fit is sta-
tistically significant. The software will provide maps that show the
way to optimal process performance. Graphical outputs make it
easy to explain how critical factors affect the process. Figs. 1 and
2 show examples of these maps in 2-D and 3-D, respectively.

Example

Table 2 shows factor settings and resulting responses from a
CCD on a reactor. Figs. 1 and 2 are derived from this data. The
design is comprised of eight factorial rows with all combinations
of the 3 factors each at 2 levels. This is a good starting point for
screening purposes. The effects can be calculated from the con-
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trast of the average responses at high ver-
sus low levels.

The design has six center rows at the
midlevel of the factor ranges. The average
of the associated responses can be com-
pared to the average of the factorial points
for an indication of curvature in the sur-
face. There also are six axial rows from
the optimization phase. These are
extreme points outside of the original fac-
torial range. They provide information on
the shape of the response surface.

To analyze the data, each of the two
responses is fitted to a polynomial model
via ordinary least-squares regression. The
design provides sufficient levels to fit up to
a quadratic polynomial such as Equation
1. Each response must be fitted separate-
ly. In this case the equations are:

Conversion = 1026.52 - 11.57 * time -
18.70 * temperature + 44.48 * catalyst -
0.076 * time2 + 0.12 * temperature? -
21.01 * catalyst? + 0.085 * time * tempera-
ture + 4.55 * time * catalyst - 1.55 * tem-
perature * catalyst.

Activity = 6.39 + 0.85 * time + 0.051 *
temperature + 4.46 * catalyst.

The second order terms for activity
were not statistically significant, so this
model is simply linear. These equations
then can be used as predictive models to
accomplish specific objectives. However,
they will be valid only within the factorial
range. Anywhere else will be an extrapola-
tion which would need to be verified by
additional experimentation.

Based on the fitted model, conversion is
maximized when each of the three factors
are set at their highest factorial levels (50
min, 90°C and 3% catalyst). Even higher
levels of conversion might be found outside
of this range via another DOE.

The second response, activity, has a
specification of 60 to 66 with a target of 63.
When the conditions favoring high conver-
sion (50, 90, 3) are plugged in to the activity
model, the predicted response is approxi-
mately 67, which falls outside of specifica-
tion. A trade-off must be made. This can be
accomplished via trial and error or with the
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aid of software. In this case, a desirable
tradeoff can be achieved at the following
conditions: 47 min, 90°C and 2.68% cata-
lyst that give predicted responses at 91%
conversion and 63 for activity.
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