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Missing Data

In a factorial design we make use of the
orthogonality to estimate as many effects (counting
the overall average as an effect) as there are
experiments. Therefore missing data can cause
some “interesting” problems:

1. Missing data make the factorial design
unbalanced and non-orthogonal.

2. For each missing response value one effect is
lost. How disastrous this is, will depend on the
size of the design and its resolution.

3. The influence of certain design points in
determining the model may become large.

4. Regression analysis will still provide a solution,
but some criteria is needed to select the effects
to estimate. |



Estimating Effects

For unbalanced factorial designs estimate
regression coefficients in a hierarchical fashion:

e« The coefficients for the main effects are least
squares estimates from the model containing the
intercept, block effects (if any), and all main
effects.

e Coefficients for the two-factor interactions are
least squares estimates from the model
containing the intercept, block effects (if any), all
main effects and all two-factor interactions.

e Estimates for the higher order interactions are
obtained in the same hierarchical manner,
eliminating effects that can not be estimated.



Estimating Effects

To use normal probability plots for unbalanced
factorial designs, the effects plotted must have a
common error variance. Missing data can cause the
variance associated with the estimated effects to

differ. The effects must be adjusted (standardized)
to correct for this problem.

Multiply each coefficient by two and then by
the ratio of the standard errors of the first
coefficient computed (usually A) to that of
the current coefficient (i).

Standardized effect; = ([30(2)(%)



25 Full Factorial
(BHH data page 377)

Effects List
A ABC
B ABD
C ABE
D ACD
E ACE
AB ADE
AC BCD
AD BCE
AE BDE
BC CDE
BD ABCD
BE ABCE
CD ACDE
CE BCDE

DE ABCDE




25 No Missing Data

DESIGN-EASE Analysis
reacted
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25 One Missing Value

DESIGN-EASE Analysis
reacted

l l l l
-10.566 -2.977 4.611 12.200

Effect

Don't Estimate ABCDE

19.788



Estimating Effects

In a fractional factorial, the higher order terms are
aliased with the main effects and/or two-factor
interactions. The resolution of a fractional factorial
design limits how many, if any, higher order
interactions are available to account for missing
values.

Effects are estimated in the same hierarchical
fashion as for a full factorial, but low order
interactions may be given up to account for the
missing values.

* In resolution IV and V designs, we typically lose
one or more two-factor interactions.

 In a resolution lll design, it may not be possible
to estimate all the main effects.



251 Fractional Factorial
(BHH data page 379)

1/, Replicate of 5 factors in 16 experiments

Design Generator: E = ABCD
Defining Relation: 1= ABCDE

A = BCDE

B = ACDE

C = ABDE

D = ABCE

E = ABCD
AB = CDE BD = ACE
AC = BDE BE = ACD
AD = BCE CD = ABE
AE = BCD CE = ABD

BC = ADE DE = ABC
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25-1 One Missing Value

DESIGN-EASE Analysis
reacted

N
<
U oop
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-6.675 0.307 7.288 14.269 21.250

Effect

Don't Estimate DE



- 3 = 0 2

T 0 = U

25-1 One Missing Value

DESIGN-EASE Analysis
reacted

I I I |
-15.018  -5.951 3.116 12.183

Effect

Don't Estimate BD

21.250




Estimating Effects

Estimate regression coefficients in a hierarchical
fashion: |

e Coefficients for the main effects are least
squares estimates from the model containing the
intercept, block effects (if any), and all main
effects.

o Coefficients for the two-factor interactions are
least squares estimates from the model
containing the intercept, block effects (if any), all
main effects and all two-factor interactions.

- Estimates for the higher order interactions are
obtained in the same hierarchical manner,
eliminating effects that can not be estimated.

When the effects of a given order can not
all be estimated, use forward stepwise
regression to choose the subset fo
estimate.



Estimating Effects

25-1 One Missing Value

. Force the intercept.

. Force the main effects.

. Select a subset (9 out of the 10) of the
two-factor interactions using forward
stepwise regression.

. Calculate the coefficients for the subset

of interactions from the model
containing the intercept, the five main
effects and the nine two-factor
interactions. |

. Standardize the effects.

. Plot the main effects and interactions on

normal probability paper and select the
“model.



25-1 One Missing Value

DESIGN-EASE Analysis
reacted

| I | I I
-5.933 0.863 7.659 14.454 21.250

Effect

Don't Estimate BC



Part ll: Statistical Significance

Kinley Lonntg

Judging Significance in Saturated Two-
level Factorials

Correlation Test for Normality

How Does Our Missing Data Procedure
Affect Judging Significance?

Concluding Comments



Judging Significance in
Saturated Factorials

« Normal probability plot is good:

clear effects stand out

marginal effects can be examined
for substantive significance

BUT --étill is somewhat subjective
calibration may be useful



Judging Significance in
Saturated Factorials

- Two methods of calibration:
- correlation test for normality
- F testing:
- pooling interactions
- sequential testing

« will not discuss here since not
graphics based



Correlation Test for Normality

- Calculate r for normal probability
plots

all effects
omitting the most significant effect

omitting the two most significant
effects

continue until r passes



Normality Test
(Filliben, 1975)

Critical values for a=0.05 test

n r.os
15 937
14 934
13 931
12 926
11 922
10 917




-_m 3 = 0 Z

T 0 = U

15 Fos — 937 r=.922

DESIGN-EASE Analysis
reacted
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-9.500 -2.000 5.500 13.000

Effect

20.500




- 3 = 0 Z

S 0 = U

n

=14 ros=.934

r=.930

DESIGN-EASE Analysis
reacted
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-9.500 -4.062 1.375 6.812

Effect

12.250




- 3 = 0 Z
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13

ros=.931 r=.914

DESIGN-EASE Analysis
reacted
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- =3 = 0 2

T 0O = T

n

12

ros=.926 r=.868

DESIGN-EASE Analysis
reacted
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-6.562 -3.625 -0.688 2.250

Effect




-_m 3 = 0 Z

O 0 = U

11 IFos = 922 r=.877

DESIGN-EASE Analysis
reacted
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-6.250 -4.125 -2.000 0.125 2.250
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- 3 = 0 2

o 0 =~ U

n=10 Fos = 917 r=.965

DESIGN-EASE Analysis
reacted

| ! I | |
-2.000 -0.937 0.125 1.188 2.250

Effect



Small Power Study

(no missing data)

« Simulate 1000 cases

- n=16, 251

- critical r at =0.05 is .937

AB effect rejection

(as o's) rate
0.0 4.5%
1.0 10.2%
2.0 55.0%
3.0 94.4%




How Does Our Missing Data
Procedure Affect Judging

Significance?

Calculation of Critical Values

# of critical observed critical
missing r-value rejection r-value
values (table) rate (observed)
0 937 4.5% 939
1 934 4.9% 934
2 931 6.8% 930
3 926 5.5% 926




Small Power Study

(missing data)

- Simulate 1000 cases
- ohe missing observation, n=15

AB effect |rejection rate
(as o's) (ros =.934)

0.0 4.9%
1.0 6.3%
2.0 27.5%

3.0 66.3%




Concluding Comments

Judging statistical significance
appropriately leads to severe critical
values.

Missing data procedure (with forward
selection of highest order interactions)
requires no adjustment to r critical
values.

Can use normal probability plot to
judge significance when there are
missing values.



