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Strategy of Experiments for
Optimal Formulation

Mark J. Anderson, PE, CQE, MBA, Engineering Consultant
Stat-Ease, Inc., Minneapolis, MN

mark@statease.com

Maximizing this educational opportunity

Welcome everyone!  To make the most from this webinar:

 Attendees on mute

 Chat addressed afterward

 Send further questions to mark@statease.com

PS  Presentation posted to www.statease.com/webinars/
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Please press the raise-hand button if you are with me.
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Mixture Design*

Considerations:

 Factors are ingredients of a mixture.

 The response is a function of proportions, not amounts.

Given these two conditions, fixing the total (an equality 
constraint) facilitates mixture modeling as a function of 
component proportions.
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Let’s try forcing a factorial design onto a mixture.

*(Pioneered by Henry Scheffé, U Cal., 1957)

Forcing  (squeezing?) factorial design on a mixture:
Lemonade
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Mixture Design and Modeling (sweet!)
Two components: Quadratic (synergistic)
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Lemons plus water
taste better than either 

one alone .
Pure Lemon

Pure Sugar Water

Three-Component Mixture
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Ternary Diagram for Mixture Composition
(for example, stainless steel flatware)
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x1 + x2 + x3 = 1

This geometry is called a simplex.

Mixture Case Study: Optimization

Keeping their total at 9%, three detergent components are varied:
A. Water,  3 - 5%
B. Alcohol,  2 - 4%
C. Urea, 2 - 4%

Goals for critical-to-quality responses:
1. Viscosity:  39-48 mPa-sec (cP), target 43
2. Turbidity: Minimize, <800 ideal, >900 unacceptable
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V22: Detergent tutorial
Rebuild, Analyze, Optimize, Overlay
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A Fun At-Home Mixture Experiment
Pound Cake (1/2)
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A kitchen scientist experimented on the main ingredients of pound cake: 
flour, butter, sugar and eggs.  (In addition, they added a constant 
amount of milk for moisture and baking powder for tenderness. Via a 
“multicomponent” constraint, they incorporated two varieties of flour:
 Costly cake and 
 Cheap all purpose

Here are the recipes for the top four tastiest cakes (rated by a panel):

Pound Cake (2/2)
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Only main-component 
effects emerged—a linear 
model.  This “trace” plot  
tells the story: The tasters 
preferred more sugar (C) 
with less flour (A&B) and 
eggs (E). 
PS Not only did this lead to 
a sweeter cake but seeing 
little advantage to the 
expensive flour by their 
aligned tracks, the new 
recipe reduced costs. 
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Strategy of Experimentation on Mixtures
(versus a process)
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Adaptations:
 Components, not 

factors
 Characterization 

and optimization 
combined into 
one “nonlinear-
blending” design

Mixture Screening
An underutilized tool for formulation development
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When studying 6 or more components, 
consider an initial minimal-blend design (broad-and-shallow) 

with only the extreme combinations
to screen these down. 

Then do an in-depth optimization
with just the vital few components.
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Simplex Screening Designs

Pick (q + n), (2q + n) or (3q + n) 
design points, it’s your option:

1. Vertices (q)

2. Axial check blends
(q: optional points)

3. Overall centroid 
(replicated n times)

4. Constraint plane centroids
(q: optional points)
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X3=1X2=1

X1=1

X2=0X3=0

X1=0

Along these tracks, each component goes from 0 to 1 
while the proportions of the other components stay constant.

Simplex-Screening Design
Success Story!

Randy and his team at the U. S. Horticultural Research Lab in Ft Pierce, 
Florida ran a mixture-screening experiment on 8 growth regulators 
affecting shoot regeneration from a “Hamlin” sweet orange.*  The 
screen identified two ingredients producing the greatest number—one 
(E: “ZR”) being  “extremely expensive” versus the other (A: “BA”), which 
costs “about 2,000x” less, yet “perfectly acceptable” being “only 
marginally less effective.” 

Randy Niedz & Terence Evens, “Mixture screening and mixture-amount designs to determine plant 
growth regulator effects on shoot regeneration from grapefruit (Citrus paradisi macf.) epicotyls,”
In Vitro Cell.Dev.Biol.—Plant (2011) 47:682–694.  
*(Picture from https://minnetonkaorchards.com/hamlin-orange-tree/ )
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Citrus
Rebuild, Show Space Type,  Reopen, Analyze, Trace
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Extreme-Vertices Screening Designs
For non-simplex constrained mixtures

Pick (2q + n) design points:

1. 2q vertices (for example 20 vertices for an experiment on 10 
components).
 Used to estimate linear effects.

2. Overall centroid (replicated n times; e.g., 5 times).
 Provides a check for curvature.
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No worries,
Stat-Ease software will detect

if your constraints fit a simplex (or not).

Mixture-Screening Case Study
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In this pioneering application of mixture screening,* chemists at Du Pont 
experimented on 8 ingredients 4 of which (underlined) were new.  They 
hoped to identify components that would increase their critical-to-
quality property and eliminate others to simplify their product recipe. 
They set up their design per the following ranges:

.10 ≤ A (X1) ≤ .45 .10 ≤ E (X5) ≤ .60

.05 ≤ B (X2) ≤ .50 .05 ≤ F (X6) ≤ .20

0 ≤ C (X3) ≤ .10 0 ≤ G (X7) ≤ .05

0 ≤ D (X4) ≤ .10 0 ≤ H (X8) ≤ .05

*Snee and Marquardt, “Screening Concepts and Designs for Experiments with Mixtures,” 
Technometrics, Vol. 18, No. 1, Feb 1976.

Extreme
Rebuild, Analyze, Trace (spaghetti)

Go back to ANOVA & view gradients (shown next slide)
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Extreme-Vertices Screening 
Sort out components by their gradients

The chemists liked the positive impacts from new components
G and H and added them to their mix. They rejected C and D. 
BTW, though existing ingredients A, B and F created negative 

effects, they were kept due to being cheap, but reduced in level.
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Component Gradient 
in Reals

Component 
Effect

Gradient 
Std Error

Approx t for H₀ 
Gradient=0 Prob > |t| Gradient in 

Pseudo
A-X1 -9.36 -3.28 0.9743 -9.61 < 0.0001 -6.55
B-X2 -6.24 -2.81 0.8504 -7.34 < 0.0001 -4.37
C-X3 1.03 0.1031 2.73 0.3782 0.7114 0.7219
D-X4 -2.28 -0.2279 2.78 -0.8190 0.4276 -1.60
E-X5 10.78 5.39 0.7881 13.67 < 0.0001 7.54
F-X6 -3.42 -0.5134 1.78 -1.93 0.0762 -2.40
G-X7 10.70 0.5351 5.25 2.04 0.0622 7.49
H-X8 19.26 0.9632 5.25 3.67 0.0028 13.48

This Webinar: 
What’s In It for You

 By way of example, this presentation lays out a strategy for 
mixture design of experiments (DOE) that provides maximum 
efficiency and effectiveness for development of an ideal 
product recipe. 

 It provides a sure path for converging on the ‘sweet spot’—the 
most desirable combination of components. 

 Learn how to screen down many ingredients to find the vital 
few and then discover their optimal formulation.

Now you know!
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Stat-Ease Training: 
Sharpen Up Your DOE Skills
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Modern DOE for Process Optimization (public or private)
Mixture Design for Optimal Formulations (public or private)
Designed Experiments for Specific Industries (private only)

Individuals Teams (6+ people)

Improve your DOE skills Choose your own date & time

Ideal for novice to advanced Customize via select case studies

Learn more & then register: 
www.statease.com

Contact:
workshops@statease.com
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Via Strategy of Experiments for
Optimal Formulation

Mark J. Anderson, Engineering Consultant
Stat-Ease, Inc., Minneapolis, MN

mark@statease.com
www.linkedin.com/in/markstat/

Stay on for 
some chat 
if you like.


