

Strategy of Experiments for Optimal Formulation

Mark J. Anderson, PE, CQE, MBA, Engineering Consultant Stat-Ease, Inc., Minneapolis, MN <u>mark@statease.com</u>

Maximizing this educational opportunity

Welcome everyone! To make the most from this webinar:

- Attendees on mute
- Chat addressed afterward
- Send further questions to <u>mark@statease.com</u>

PS Presentation posted to www.statease.com/webinars/

Please press the raise-hand button if you are with me.

Strategy of Experiments for Optimal Formulation

Mixture Design*

Considerations:

- > Factors are ingredients of a mixture.
- > The response is a function of proportions, not amounts.
- ❖ Given these two conditions, <u>fixing the total</u> (an equality constraint) facilitates mixture modeling as a function of component proportions.

Let's try forcing a factorial design onto a mixture.

*(Pioneered by Henry Scheffé, U Cal., 1957)

Strategy of Experiments for Optimal Formulation

3

Forcing (squeezing?) factorial design on a mixture: Lemonade

1

Lemons

2

Strategy of Experiments for Optimal Formulation

Ternary Diagram for Mixture Composition (for example, stainless steel flatware)

Mixture Case Study: Optimization

Keeping their total at 9%, three detergent components are varied:

- A. Water, 3 5%
- B. Alcohol, 2 4%
- C. Urea, 2 4%

Goals for critical-to-quality responses:

- 1. Viscosity: 39-48 mPa-sec (cP), target 43
- 2. Turbidity: Minimize, <800 ideal, >900 unacceptable

<u>V22</u>: Detergent tutorial Rebuild, Analyze, Optimize, Overlay

Strategy of Experiments for Optimal Formulation

A Fun At-Home Mixture Experiment *Pound Cake* (1/2)

A kitchen scientist experimented on the main ingredients of pound cake: flour, butter, sugar and eggs. (In addition, they added a constant amount of milk for moisture and baking powder for tenderness. Via a "multicomponent" constraint, they incorporated two varieties of flour:

- Costly cake and
- Cheap all purpose

Here are the recipes for the top four tastiest cakes (rated by a panel):

Run	A:Cake fl			D:Butter	E:Eggs	Color s=0		
	OZ	OZ	oz	OZ	OZ	Rating	mm	Rating
24	3.0	0.0	5.0	5.0	3.0	7.6	64	7.1
5	2.0	2.0	5.0	4.0	3.0	7.1	60	6.8
19	0.0	3.0	5.0	4.0	4.0	8.4	64	6.8
7	0.0	5.0	5.0	3.0	3.0	6.9	58	6.6

Strategy of Experiments for Optimal Formulation

9

Pound Cake (2/2)

Only main-component effects emerged—a linear model. This "trace" plot tells the story: The tasters preferred more sugar (C) with less flour (A&B) and eggs (E).

PS Not only did this lead to a sweeter cake but seeing little advantage to the expensive flour by their aligned tracks, the new recipe reduced costs.

Strategy of Experiments for Optimal Formulation

Simplex Screening Designs

Pick (q + n), (2q + n) or (3q + n) design points, it's your option:

- 1. Vertices (q)
- 2. Axial check blends (q: optional points)
- 3. Overall centroid (replicated n times)
- Constraint plane centroids X₂=1

Along these tracks, each component goes from 0 to 1 while the proportions of the other components stay constant.

Strategy of Experiments for Optimal Formulation

13

Simplex-Screening Design *Success Story!*

Randy and his team at the U. S. Horticultural Research Lab in Ft Pierce, Florida ran a mixture-screening experiment on 8 growth regulators affecting shoot regeneration from a "Hamlin" sweet orange.* The screen identified two ingredients producing the greatest number—one (E: "ZR") being "extremely expensive" versus the other (A: "BA"), which costs "about 2,000x" less, yet "perfectly acceptable" being "only marginally less effective."

Citrus

Rebuild, Show Space Type, Reopen, Analyze, Trace

Randy Niedz & Terence Evens, "Mixture screening and mixture-amount designs to determine plant growth regulator effects on shoot regeneration from grapefruit (Citrus paradisi macf.) epicotyls," In Vitro Cell. Dev. Biol. — Plant (2011) 47:682–694.

*(Picture from https://minnetonkaorchards.com/hamlin-orange-tree/)

Strategy of Experiments for Optimal Formulation

Extreme-Vertices Screening Designs For non-simplex constrained mixtures

Pick (2q + n) design points:

- 1. 2q vertices (for example 20 vertices for an experiment on 10 components).
 - Used to estimate linear effects.
- 2. Overall centroid (replicated n times; e.g., 5 times).
 - Provides a check for curvature.

No worries, Stat-Ease software will detect if your constraints fit a simplex (or not).

Strategy of Experiments for Optimal Formulation

15

Mixture-Screening Case Study

In this pioneering application of mixture screening,* chemists at Du Pont experimented on 8 ingredients 4 of which (underlined) were <u>new</u>. They hoped to identify components that would increase their critical-to-quality property and eliminate others to simplify their product recipe. They set up their design per the following ranges:

 $.10 \le A (X1) \le .45$ $.10 \le E (X5) \le .60$
 $.05 \le B (X2) \le .50$ $.05 \le F (X6) \le .20$
 $0 \le C (X3) \le .10$ $0 \le G (X7) \le .05$

 $0 \le H (X8) \le .05$ Rebuild, Analyze, Trace (spaghetti) Go back to ANOVA & view gradients (shown next slide)

^{*}Snee and Marquardt, "Screening Concepts and Designs for Experiments with Mixtures," Technometrics, Vol. 18, No. 1, Feb 1976.

Strategy of Experiments for Optimal Formulation

16

 $0 \le D (X4) \le .10$

Extreme-Vertices Screening Sort out components by their gradients

Component	Gradient in Reals	Component Effect	Gradient Std Error	Approx t for H _o Gradient=0	Prob > t	Gradient in Pseudo
A-X1	-9.36	-3.28	0.9743	-9.61	< 0.0001	-6.55
B-X2	-6.24	-2.81	0.8504	-7.34	< 0.0001	-4.37
<u>C-X3</u>	1.03	0.1031	2.73	0.3782	0.7114	0.7219
<u>D-X4</u>	-2.28	-0.2279	2.78	-0.8190	0.4276	-1.60
E-X5	10.78	5.39	0.7881	13.67	< 0.0001	7.54
F-X6	-3.42	-0.5134	1.78	-1.93	0.0762	-2.40
<u>G-X7</u>	10.70	0.5351	5.25	2.04	0.0622	7.49
<u>H-X8</u>	19.26	0.9632	5.25	3.67	0.0028	13.48

The chemists liked the positive impacts from new components G and H and added them to their mix. They rejected C and D. BTW, though existing ingredients A, B and F created negative effects, they were kept due to being cheap, but reduced in level.

Strategy of Experiments for Optimal Formulation

17

This Webinar: What's In It for You

- By way of example, this presentation lays out a strategy for mixture design of experiments (DOE) that provides maximum efficiency and effectiveness for development of an ideal product recipe.
- ➤ It provides a sure path for converging on the 'sweet spot'—the most desirable combination of components.
- ➤ Learn how to screen down many ingredients to find the vital few and then discover their optimal formulation.

Now you know!

Strategy of Experiments for Optimal Formulation

References

*Anderson, et al, Taylor & Francis, Productivity Press, New York, NY.

Strategy of Experiments for Optimal Formulation

19

Stat-Ease Training: Sharpen Up Your DOE Skills

- □ Designed Experiments for Specific Industries (private only)

Individuals	Teams (6+ people)
Improve your DOE skills	Choose your own date & time
Ideal for novice to advanced	Customize via select case studies

Learn more & then register:

www.statease.com

Contact:

workshops@statease.com

Strategy of Experiments for Optimal Formulation

