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Abstract

Statistical design of experiments (DoE), a computer-aided optimization

technique, provides many benefits:
e identifies critical factors,
e reveals their interactions - synergistic or antagonistic,
e finds ideal process conditions that accomplish the targeted response(s).

The DoE approach facilitates screening of process variables, seeking out

robust conditions and testing the recommended settings for ruggedness.

Optimization of a non-linear process response, for example, one that follows
arising ridge in relation to the key factors, requires a more advanced statistical

technique called “response surface methods,” or RSM.

DoE in all its forms has been widely used in pharmaceutical formulation and
research. It requires proper selection of the experiment design and good statistical

analysis to produce a useful, validated predictive model.

Screening of available literature revealed a number of potential perils for

novices in this methodology:



e inappropriate selection of model,
¢ inclusion of non-significant terms into the model,

e use of raw response data when a simpler and more precise model would be

obtained in a mathematically transformed scale, such as logarithmic.

This leads to over- or under-prediction and thus, reduced reliability of the

DoE approach.

Keeping all of these points in view, this report provides education by
example - the empirical modeling of a fabrication process for producing

nanoparticles from a natural polymer.
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Introduction

The traditional approach to drug-design experimentation requires that only
one factor at a time (OFAT) be changed while keeping all other variables constant.

This OFAT approach has many major flaws, but the two most egregious ones are:

(1) It cannot assess factor interactions, which in pharmaceutical processes must

be anticipated,
(2) It covers a small fraction of the total feasible factor space (Anderson, 2005).

Statistical design of experiments (DoE), a matrix-based multifactor method,
does measure interaction effects and it encompasses the entire multidimensional
experimental region (Anderson and Whitcomb, 2007). Aided by software
programmed for this purpose, DoE has become recognized as an important tool for
more rapid pharmaceutical process and product development (Bolton and Bon,

2004).

Figure 1 illustrates a generally accepted strategy for DoE aimed at rapid, yet
comprehensive, process improvement. It begins with a “Discovery” phase that calls
for brainstorming and pilot studies that include range-finding trials. Many
experimenters jump too quickly into a test matrix and end up wasting time on the
wrong factors with ranges that are either too narrow, thus generating nothing
significant, or too wide - going beyond operational limits. Then they must back up
and start again by attempting to re-discover a proper starting point for their process

and product development.
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Figure 1: Strategy of experimentation

(Adapted and modifed from Anderson and Whitcomb, 2005)

The “Breakthrough” designs listed in Figure 1 vary all factors simultaneously
via cleverly-devised matrices that compute effects with maximal power for
predictive modeling. In fact, for a given level of statistical power, modern DoE
methods require far fewer experimental runs than the OFAT approach (Anderson,

2005; Lewis, et al, 1999).



Designs listed under the “Optimization” section of Figure 1 are known as
response surface methods (RSM), the basis of which is polynomial models fit by
least-square regression and confirmed statistically via analysis of variance (ANOVA)
(Anderson and Whitcomb, 2005). By deriving empirical, but functionally useful,
relationships - typically second-order - between process responses and the critical
input variables, RSM facilitates discovery of ‘sweet spots’ where all requirements

can be achieved at lowest cost.

The ultimate goal of DoE is to construct a useful predictive model of all
critical response measures of process efficiency and product efficacy. Armed with
these polynomial equations, specialized software can apply numerical search
algorithms that find the most desirable conditions (Vaughn, et al, 2007). However,
this recommendation must be validated via confirmatory tests as detailed in the
final stage of the strategy for experimentation outlined in Figure 1. Ideally, the
percent relative error between the predicted and validation output falls within
+15% (Wayne, 1991). Also, standard protocols provide templates for establishing
the ruggedness of any given system against variations - both internal, for example

variations in set points, and external, such as ambient humidity (ASTM, 2007).

Current literature on pharmaceutical dosage-form design and research is
replete with the use of DoE. Unfortunately, screening of available literature revealed

frequent inappropriate use of the approach, such as:

a) Models not appropriate for their purpose, for example using ones

geared for process variables when the application is for formulation,

b) Undermining the model hierarchy by unwise elimination of seemingly

insignificant terms,

c) Fitting raw response data that would be modeled more precisely and
accurately after transformation by the natural logarithm or other

mathematical functions,

d) Predicting responses outside the actual experimental region, in other

words, extrapolating the model.



However, the focus of the paper is not to pinpoint these shortcomings of the
prior studies, but rather show by good example (the fabrication of nanoparticles) a
more statistically-rigorous approach to design and analysis of pharmaceutical

experiments.
Experimental

The polymeric nanoparticles were fabricated with phospholipids using probe
sonication. After completing initial discovery steps and completing the
breakthrough phase in the strategy of experimentation, two variables, the amount of
phospholipids (A) and the time of sonication (B) survived as the best candidates for

optimization. Particle size was measured as the primary response variable.

To model potentially non-linear effects by response surface methods (RSM),
at least three levels of each factor must be tested. The goal of RSM is to fit a second-

order equation called a “quadratic model,” which for two factors takes the form:

}A/' = BO + B1A+ BzB+ BleB + BllAz + Bzsz
where the y under the hat (*) represents the predicted response and the Greek

letter betas (3) are the coefficients determined experimentally.

As noted in Figure 1, the top RSM design choice is the central composite
design (CCD) because it offers the most flexibility. For example, if a prior two-level
factorial experiment encompasses an ideal operating region, it can be built up into a
CCD by simply adding more points along the factor axes. Figure 2 illustrates the
central composite design structure for this case study. It provides five levels for each

factor.
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Figure 2: Design layout for nanoparticle RSM experiment

The geometry of the CCD is a square (or cubical in three dimensions) of

“factorial” levels, which in this case are:
A. Time (minutes): 0 to 5
B. Phospholipid (percent) 0 to5

These ranges are coded for mathematical purposes as minus one (-1) versus
plus one (+1), with four axial points protruding outside of this core region of
interest. The distance is usually dictated by design rotatability, that is, equally
precise prediction capability at equal distances from the center. By this criterion, a
two-factor CCD requires its furthest points be placed at 1.414 coded units, plus or
minus. However, more recent research suggests a more practical, less extreme,
placement calculated from the fourth root of the number of factors (Anderson and
Whitcomb, 2005). Taking the more practical (and modern) route in this case places

the points roughly 1.2 coded units out from the center of the experimental region.



The center point in this CCD is replicated five times - a not just re-sampled or
re-tested, but completely re-run, thus providing a true measure of error due to
natural variations from start to finish. The number of replicates is chosen to provide
a broad region where the standard error of prediction remains relatively stable.
However, as indicated by the background shading in Figure 2 the outer regions,
particularly at the corners, where the response model must be extrapolated, cannot
be predicted as precisely. If one of these areas turns out to be desirable, another
experiment, perhaps with tighter ranges, would be advisable to provide a proper

focus.

The results from the 13-run design shown in Table 1 stem from an actual
experiment, which then provided the basis to demonstrate the effectiveness of this
modern RSM for producing useful predictive models. The bracketed factor values
come from the coded CCD template described above. Actual factors levels were
rounded slightly in some cases for convenience sake, but not enough to materially

affect the design properties from a statistical view.

Table 1: Design matrix and experimental results

B:
A: Phospho- | Particle

Std Point Time lipid Size
Order Type (min.) (%) (nm)
1 | Factorial | 0.4 [-1] 0.4 [-1] 526.4

2 Factorial 4.6 [+1] 0.4 [-1] 179.6

3 Factorial | 0.4 [-1] 4.6 [+1] 676.6
4 Factorial 4.6 [+1] 4.6 [+1] 186.1
5 Axial | 0.0[-1.2] 2.5 [0] 270.1
6 Axial 5.0 [+1.2] 2.5[0] 123.6
7 Axial 2.5 [0] 0.0[-1.2] | 1989
8 Axial 2.5[0] 5.0 [+1.2} 187.9
9 Center 2.5[0] 2.5[0] 163.0
10 Center 2.5 [0] 2.5 [0] 160.0
11 Center 2.5 [0] 2.5 [0] 169.5
12 Center 2.5[0] 2.5[0] 146.4
13 Center 2.5 [0] 2.5 [0] 115.0




Analysis
Model selection

Aided by software designed for RSM (Vaughn, et al, 2007), a quadratic model
was fitted to the experimental results. However, diagnostics of the residuals, the
differences between actual and predicted particle sizes, indicated a significant
improvement would be gained by first taking the inverse of the responses (1/y).
Transformations of this sort, more often the logarithm, are commonly applied to
provide better statistical properties, thus validating a model within the factorial

region of the RSM experiment.

The primary statistical tool for identifying the need for transformations, and
for pinpointing which one works best, is the Box-Cox plot, which Anderson and
Whitcomb (2005) detail in their Chapter 5 appendix. However, in this case the
beneficial impact of the inverse is made obvious by the comparison between Figures
3a (left) and 3b (right), which illustrate modeling of particles size with or without
response transformation; respectively. Notice how much better the solid curve at
the left fits the maximum particle size at the lowest time (with the second factor
phospholipid fixed at its center level of 2.5 percent). Furthermore, the dotted
confidence band reflects the greater variation at these highest levels of response. An
obvious defect of not transforming by the inverse is evident in Figure 3b (plot at the
right) by the lower confidence band falling below zero at the highest time. That

cannot be!
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Figure 3a,b: Particle size modeled as inverse (left) and as-is (right)

versus time with phospholipid fixed at 2.5%

The full picture of predicted particle size is provided by Figure 4 - the

response surface as a function of both factors (time and phospholipid level).
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These predictions are based on the following model (quadratic) in terms of

actual factors:
1/y=0.000665 + 0.002230 A +0.001898 B — 0.000268 Az — 0.000383 B2

Statisticians generally model in coded factors to avoid the round-off
problems that occur when using actual units of measure, which are more practical

for the experimenters (thus, that is what we present here).

The statistical analysis of variance (ANOVA) revealed an overall model p of
less than 0.01 - very significant. Lack of fit testing produced a p-value above 0.5,
which is very good. The adjusted R? came in at 0.74 - highly satisfactory for

empirical modeling.

The p value for B exceeds 0.9, which made removal of this term very
tempting. However, because B2 is very significant (p = 0.01), removing its parent
term B would undermine the hierarchy of the model, thus producing erroneous
predictions when converted to actual terms (Peixoto, 1990). Hierarchy is ancestral
linkage of effects flowing from main effects (regarded as parents) down through
successive generations of higher-order interactions (children). Thus, if two
individual interacting factors are included in the model, both of the main effects
should also be included. Unwary experimenters, who blindly apply computerized-
modeling tools without first educating themselves on RSM, often ignore hierarchy,

which leads to unforeseen inaccuracies in their predictive modeling.

A side-benefit of maintaining model hierarchy is that this avoids often
misleading impressions that a particular factor is not significant when, indeed, it
makes a difference, albeit only at a higher order or in concurrence with other factors
(Anderson and Whitcomb, 2007). For example, in this case if term B is removed on
the basis of its high p value, one might think that phospholipid level matters little,
when, in fact, it greatly affects particle size, as seen in the response surface (Figure

4).

This model can be reduced somewhat by eliminating the insignificant

interaction term AB (p>0.9). Some statisticians caution against such elimination of
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specific terms, advocating instead that modelers maintain the entire quadratic
polynomial as standard practice (Myers and Montgomery, 2002). However, in this
case by taking out term AB the predicted R? increases from 0.47 to 0.62. This
calculation-intense statistic is based on the predicted residual sum of squares, called
PRESS, which starts by re-fitting the model without the first run. The new model
then predicts the first response, from which the residual from the actual result is
computed. This process is repeated for each of the remaining runs and the squared
residuals are summed into the PRESS. Because the predicted R? is based on the
PRESS, it provides a more severe test of model adequacy than the adjusted R?, but if
the difference between these two types of R-squareds exceeds 0.20, there may be a
problem with either the data or the model (Vaughn, 2007). After removing the AB
term, the predictive model for particle size produces reasonably good agreement

between the two R? statistics - their gap falls within the 0.2 guideline.
Optimization

Ultimately, the goal of the pharmaceutical experimenters in this case was to
minimize particle size. Results above 200 nm were unacceptable. Ideally, this size-
reduction goal could be exceeded at the lowest possible processing (sonication)
time. Given the predicted model detailed above, which diagnostics validated
statistically, numerical hill-climbing algorithms can search out most desirable
outcomes (Vaughn, 2007). Figure 5 shows the optimal conditions for minimizing

particle size with time-reduction added as a desirable outcome.
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Flgure 5: Most desirable operating conditions for sonication

Figure 6 shows a 3D rendering of desirability.
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The suggested setup at 2.60 minutes of sonication with phospholipid at 2.48
percent falls very near the experiment design’s center point, which repeatedly
produced particles below the desired maximum level of 200 nm. The model predicts
a particle size of 142 nm at the optimum with a prediction interval (PI) of 105 to

223.

If longer times can be afforded and thus it no longer becomes desirable to
minimize, the optimum setup shifts to 4.2 minutes with 2.48 percent phospholipid.
The longer sonication is predicted to reduce particle size down to 130 nm with a PI

of 98 to 196.
Conclusion

The case study on pharmaceutical soninication demonstrated the utility of
statistical design of experiments (DoE), especially response surface methods, for
process optimization. If significant results are achieved, the resulting predictive
models enable computer-aided searches for factor combinations that achieve
desirable responses at economical operating conditions. The authors hope that this
example provides inspiration for other pharmaceutical scientists and engineers to
overcome any aversions to statistically-based methods, thus taking advantage of

powerful tools for more quickly accomplishing goals for research and development.
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