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Using Graphical Diagnostics to Deal
With Bad Data

Mark J. Anderson and Patrick

J. Whitcomb

Stat-Ease, Inc., Minneapolis, MN

ABSTRACT This article deals with thorny issues that confront every exper-

imenter, i.e., how to handle individual results that do not appear to fit with

the rest of the data. It provides graphical tools that make it easy to diagnose

what is wrong with response data—damaging outliers and=or a need for

transformation. The trick is to maintain a reasonable balance between two

types of errors: (1) deleting data that vary only due to common causes, thus

introducing bias to the conclusions. (2) not detecting true outliers that occur

due to special causes. Such outliers can obscure real effects or lead to false

conclusions. Furthermore, an opportunity may be lost to learn about pre-

ventable causes for failure or reproducible conditions leading to break-

through improvements (making discoveries more or less by accident).

Two real life data sets are reviewed. Neither reveals its secrets at first glance.

However, with the aid of various diagnostic plots (readily available in off-the-

shelf statistical software), it becomes much clearer what needs to be done.

Armed with this knowledge, quality engineers will be much more likely to draw

the proper conclusions from experiments that produce bad (discrepant) data.

KEYWORDS Box-Cox plot, design of experiments (DOE), diagnostics, outliers,

transformations

INTRODUCTION

Personal computer software makes it very easy to fit models to experi-

mental data via leastsquares regression. However, these models often prove

susceptible to outliers created by special causes. Such outliers occur with

alarming frequency due to errors in data entry, breakdowns in equipment,

mistakes by operators, nonrepresentative samples, bad measurements and

unknown lurking variables that appear only intermittently.

On the other hand, all experimenters must be careful not to bias their

results by deleting data that does not meet their preconceived notions. In

many cases the data deviates from the standard assumptions that variations

are normally distributed with zero mean and a fixed variance. In such cases,

outliers may be falsely reported when the real problem is that the response

needs to be transformed by the log or some other function. Table 1 shows

how an experimenter can be correct or in error about that presence or

absence of true outliers, that is, data produced by special causes.
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Correctly identified outliers should not just be

thrown away. They might reveal something of great

value. For example, despite the presence of a satel-

lite that collected the necessary data, it took many

years before scientists realized the presence of a hole

in the ozone layer over the Antarctic. Unfortunately

the data acquisition system automatically deleted

outliers caused by the intermittent hole so it never

got reported (Sparling).

Statisticians have developed very powerful graphi-

cal methods for diagnosing abnormalities in data,

detecting potential outliers, and suggesting possibly

beneficial transformations. Many of these diagnostics

will be shown in this article, with references pro-

vided for those desiring more details. As will be

demonstrated via case study, it would be a serious

mistake not to take advantage of these methods

before drawing conclusions about the outcome of

an experiment.

Two case studies follow, both of which detail

results from design of experiments (DOE)

(Montgomery, 2005). They illustrate situations where

an unwary experimenter might either overlook real

outliers that obscure the true effects (false negative)

or throw out data that can be explained via an appro-

priate response transformation (false positive).

CASE STUDY ON IMPROVING
BEARING LIFE

George Box reported a compelling success story

for two-level factorial DOE that focused on improv-

ing the life of a deep groove rolling bearing (Box,

1990). Figure 1 shows the factors and the astonishing

results (hours of bearing life) in the form of a cube

plot (the numbers in parentheses show the standard

design order). Although Box does not mention it,

one would think that the many-fold increase in

response to above 100 hours merits an immediate

confirmation at the setting from which it was pro-

duced; the highest levels of the three test-factors:

(a) Osculation (the ratio of the radius of the cage to

the radius of the bearing)

(b) Heat (level of treatment)

(c) Cage (one material versus another—neither re-

vealed by the original experimenter)

Could these results be real and can they be

explained?

We now delve into a statistical analysis of this data

using techniques developed by Box and his prede-

cessors. Figure 2 shows the half-normal plot of

effects (Anderson and Whitcomb, 2000). Factors A,

B and their interaction AB stand out on the absolute

scale of effect on bearing life. However, notice that

the smaller effects (points not labeled) do not line

up with the origin of the half-normal plot, resulting

in an abnormal pattern. Analysis of variance

(ANOVA) for the modeled effects (A, B and AB)

FIGURE 1 Cube plot of bearing experiment.

TABLE 1 Errors in Judging Whether or not Outliers are Present

in Experimental Data

What is presumed

Outlier(s)? Yes (present) No (absent)

The truth: Yes Correct False negative

No False positive Correct

FIGURE 2 Half-normal plot of effects for bearing experiment.

M. J. Anderson and P. J. Whitcomb 112
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shows a high level of significance (P < 0.05), but, as

shown in Figure 3, diagnosis of the externally stu-

dentized residuals (Weisberg, 1985), a common

method for detecting discrepant data that some soft-

ware labels ‘‘outlier t,’’ reveals two potential outliers

in the data-points 4 and 8. (Note: the x-axis on this

plot generally displays ‘‘Run’’ number, presumably

randomized, but it’s shown in standard order to be

consistent with Figure 1). These two discrepant

points fall more than six standard deviations from

their expected value (the zero line on the plot), at

about the 95% confidence level (a ¼ 0.05 risk) for

the appropriate test of significance.

It would be very easy at this stage to delete the

two discrepant values, but this would be a big mis-

take, because as shown in Figure 1, points 4 and 8

represent the breakthrough improvement in bearing

life. Perhaps the problem lies not in the data, but in

how it is modeled. This behavior becomes obvious

upon inspection of two basic plots for diagnosing

residuals: the normal plot (Figure 4a), which ideally

shows a straight line, and a graph of residuals versus

predicted values (Figure 4b) that normally exhibits a

constant variation from left (low level of response) to

right (highest predicted level).

Notice that in both plots the residuals have

been studentized to account for potential variations

in the leverage of the data points. This transform-

ation rescales the residuals from actual units (in this

case the life in hours) to units of standard deviation.

We advise that one always use the studentized scale

when assessing the relative magnitude of residuals.

In this example, both plots exhibit nonnormality:

an ‘‘S’’ shape on the normal plot and a megaphone

(< ) pattern on the residuals versus predicted plot.

These abnormal patterns are very typical of data

that vary over such a broad range (eight-fold in this

case) that it needs to be transformed via a logarithm

to get a decent fit with a factorial model. This

requirement becomes evident in a plot of the scaled

residual sum-of-squares (RSS) versus varying powers

of response transformation, called ‘‘Box-Cox’’ after

the originators. The Box-Cox plot (Figure 5) shows

the current power (symbolized mathematically

by the Greek letter lambda—k) by the dotted line

FIGURE 3 Externally studentized residual (outlier t) plot for

bearing experiment.

FIGURE 4 Normal plot of residuals (a) and residuals versus predicted (b) plot for bearing case.

113 Graphical Diagnostics for Bad Data
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at one on the x-axis. This location represents no

transformation of the response data. Alternatively,

the response is transformed by a range of powers

from �3 (inverse cubed) to þ3 (cubed). The trans-

formed data is then refitted with the proposed model

(in this case A, B, AB) and the scaled RSS generated.

(Box and Cox recommended plotting against the

natural logarithm (Ln) of the RSS, but this is not of

critical importance.) The power (k) that gives the

minimum model RSS can then be found and a confi-

dence interval calculated.

In this case notice that the current k (the dotted

line) falls outside of the 95% confidence interval

for the best k. Therefore, applying a different power,

one within the confidence interval at or near the

minimum, will be advantageous. It is convenient in

this case to select a power of zero, which represents

the logarithmic transformation, either natural or

base-10 it does not matter (Box and Draper, 1987).

Let’s try the base-10 log on the bearing data. Figure

6 shows the plot of effects in this new metric.

Notice that now the smaller effects (presumably

insignificant) emanate from the origin—a normal

pattern for two-level factorial design data. Now good

patterns are seen on diagnostic plots of the residuals;

straighter line on normal plot (Figure 7a) and more

general scatter versus predicted level (Figure 7b).

Finally, what happened to the suspected outliers?

As shown in Figure 8, they now fall into line with

the other points. Now we can focus on what George

Box wanted to show with the bearing case how

proper DOE revealed a powerful interaction that

could not be seen by simple one-factor-at-a-time

(OFAT) methods. This influence becomes obvious

in the interaction graph of AB (Figure 9) constructed

from the analysis of data in log scale, but with the

response untransformed to the original units of mea-

sure (life in hours).

Notice how wide the interval, representing the

least significant difference (LSD) for 95% confi-

dence, becomes at the increased level of life with

both A (osculation) and B (heat) at their high levels.

This finding is the reason for doing the analysis in

the log scale, which counteracts the direct depen-

dence of variation on predicted level observed in

Figure 4b. The analyst now gains a subtle benefit

from applying the response transformation: What

looks like a large difference in life, 85 versus 128

hours (Figure 1), obviously must be due only to

chance based on the length of the LSD interval. Thus

it becomes more apparent why factor C (cage

design) did not emerge as a significant factor.

According to Box, the engineers who conducted

the bearing experiment did not expect this outcome.

It saved their company a lot of money that would

otherwise have been spent on reconfiguring their

production for a new design.

This case study illustrates the application of a log

transformation to better fit good data that might

FIGURE 5 Box-Cox plot for bearing case.
FIGURE 6 Half-normal plot of effects for bearing data trans-

formed by log, base 10.

M. J. Anderson and P. J. Whitcomb 114
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otherwise be wrongly deleted as outliers—the false

positive error defined in Table 1. The log transform-

ation is just one member from a family of transforma-

tions, designated as ‘‘power law’’ by statisticians,

which one should consider for ‘‘bad’’ response data.

The Box-Cox plot is most helpful as a guide to use of

the power law transformations. Remember that the

log transformation represents a special case where

the power will be labeled ‘‘0’’ on the X-axis of the

Box-Cox plot. Other transformations that might be

revealed are the square root (0.5 power), which

works well for counts, such as the number of

blemishes per unit area, and the inverse (�1 power),

which often provides a better fit for rate data. For

more detail on the inverse (‘‘reciprocal’’) transform-

ation see Box, Hunter and Hunter, Chapter 8 (Box

et al., 2005). Other transformations, not part of the

power law family, may be better for certain types

of data, such as pass=fail from quality control

records. This scenario is discussed in the second case

study that follows.

CASE STUDY ON REDUCING DEFECTS
IN DIE-CAST ALUMINUM PARTS

A manufacturer of die-cast aluminum parts wanted

to reduce the defect rate on a diskdrive housing

FIGURE 7 Normal plot of residuals (a) and residuals versus predicted (b) plot for transformed bearing data.

FIGURE 8 Externally studentized residual (outlier t) plot for

bearing data in log-scale.

FIGURE 9 Interaction plot of AB from analysis of bearing data

after transformation.

115 Graphical Diagnostics for Bad Data
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(DeVowe, 1994). The process engineer designed a

16-run, two-level fractional factorial experiment to

screen the following five factors:

(a) Hot oil temperature

(b) Trip in mm

(c) Molten aluminum temperature

(d) Fast shot velocity

(e) Dwell time

The operators measured fraction defective out of 50

parts made at each set of conditions. The results can

be seen in Table 2. It lists them in standard order, but

they were actually performed in random fashion at

the insistence of the engineer, who had been trained

on the design and execution of statistically sound

experiments. The results ranged from 0.06 (6%

defective) to 1 (100% defective!). The defect rate

had been running as high as 50% so the experiment

looked promising.

However, to the experimenter’s dismay, none of

the effects stood out on the half-normal plot of

effects (Figure 10). Having put his manufacturing

staff through a great deal of effort and taken up a full

week of production, the engineer could not accept

the possibility of nothing being significant.

The first thing that came to mind was the

possibility that the response data needed to be

transformed. The standard transformation for

binomial data such as fraction defect (pass=fail) is

the arcsin square root. However, this made very little

difference in the pattern of effects—again, none

stood out. But one possibility remained. Something

may have gone wrong with one or more of the runs,

thus creating potentially damaging statistical out-

lier(s). To check this, several of the biggest effects

were chosen (Figure 11) to create a predictive

model.

Not surprisingly, the ANOVA for this model does

not show much significance. The real surprise comes

when one looks at the normal plot of residuals from

the model (see Figure 12). Obviously, one of the

experimental runs stands out from the rest. This

becomes even more apparent in the plot of exter-

nally studentized residuals (Figure 13), which, as

noted earlier, helps to detect outliers.

Now the experimenter could identify the culprit;

run number 1 (actually done in randomized order,

but reported here in standard order to match the lay-

out of Table 1). The foreman, when confronted with

this statistical evidence, broke down and confessed

that the operators overlooked this particular combi-

nation of factors. They then tried to make up for it

by coming in early the following week, after shutting

down the foundry over the weekend, to sneak

the missing run in before the engineering staff came

TABLE 2 Data from die-casting experiment

Std

order

A: Hot

oil

temp

(�F)

B:

Trip

(mm)

C:

Metal

temp

(�F)

D:

Fast

shot

(mm)

E:

Dwell

time

(sec)

Defects

fraction

1 350 390 1260 1.60 5.50 0.14

2 450 390 1260 1.60 3.50 0.98

3 350 410 1260 1.60 3.50 0.36

4 450 410 1260 1.60 5.50 0.42

5 350 390 1300 1.60 3.50 1.00

6 450 390 1300 1.60 5.50 0.90

7 350 410 1300 1.60 5.50 0.28

8 450 410 1300 1.60 3.50 0.14

9 350 390 1260 2.20 3.50 0.22

10 450 390 1260 2.20 5.50 0.26

11 350 410 1260 2.20 5.50 0.38

12 450 410 1260 2.20 3.50 0.12

13 350 390 1300 2.20 5.50 0.30

14 450 390 1300 2.20 3.50 0.06

15 350 410 1300 2.20 3.50 0.22

16 450 410 1300 2.20 5.50 0.38

FIGURE 10 Half-normal plot of effects from die-casting

experiment.

M. J. Anderson and P. J. Whitcomb 116
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in to work. Considering all that can happen during

the start up of process like this that involves molten

metal, it is fair to say that the statistical outlier

occurred due to a special cause.

The next step is to try ignoring the discrepant run.

The elimination of response data results in a loss of

information on effects, not serious in this case, but

something to be aware of. Box (1990–91) details a

simple way, one that could be hand calculated, to

plug in a ‘‘fitted value’’ for a missing or deleted value

based on a method developed by Draper and

Stoneman (1964). However, via more modern

methods made possible by the computer (Larntz

and Whitcomb, 1993), readily available statistical

software makes it easy to recalculate effects after

deleting outliers such as the one identified in the

die-casting case. Figure 14 shows the half-normal

FIGURE 12 Normal plot of residuals from model for die-casting

data.

FIGURE 13 Externally studentized residual (outlier t) plot for

die-casting data.

FIGURE 11 Half-normal plot of effects for die-casting data after

doing a transformation.

FIGURE 14 Half-normal plot of effects for die-casting data after

ignoring the outlier.

117 Graphical Diagnostics for Bad Data
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plot of effects with the outlier ignored and the

effects recomputed using the methods of Larntz

and Whitcomb.

At this stage it makes little difference whether the

response is transformed or left in the original units of

measure, the effects become amazingly clear from B,

D and their interaction BD. We will leave the arcsin

square root transformation in place because, not

only is this standard practice for fraction defect data,

it provides somewhat cleaner analysis. It is easy with

some mathematics to reverse the transformation and

put the response back into the original units before

generating the effects plot. In this case the interac-

tion, shown in Figure 15, proved to be the key.

The combination of low B (trip) and low D (fast

shot) causes the process to fail. By simply increasing

the level of factor B and=or D, the fraction defects

drops way off. Inspired by these results, which at first

remained obscured by the outlier, the engineer led

his team through subsequent experimentation that

reduced defects in their die-cast aluminum part to

near zero percent. This case study illustrates the ‘‘false

negative’’ error spelled out in Table 1– a real outlier

that was mistakenly included in the initial analysis.

CONCLUSION

An outlier is a response from an experiment that

does not fit the proposed model. Before jumping to

any conclusions, first consider that the model may

be faulty, not the data. The bearing case showed

an example of this—the best results cropped up

as outliers, which naturally provokes a search for

alternatives to deleting data. In such cases one often

sees a nonlinear (abnormal) pattern on the normal

plot of studentized residuals and a significant devi-

ation from the ideal transformation on the Box-Cox

plot.

On the other hand, the result might really be an

outlier due to an assignable cause. This proved to

be the case in the study aimed at reducing defects

in the die-cast aluminum part—the operators made

a mistake. True outliers should not be dismissed;

the response may actually be different at that parti-

cular combination of the design factors. Further

study may lead to an important discovery.

As the famous physicist Richard Feynman said

(Feynman, 1974), ‘‘The first principle is that you must

not fool yourself and you are the easiest person to

fool.’’ By using the appropriate graphs to diagnose

and deal with potentially bad experimental data,

quality engineers can improve their odds of not

being fooled into presenting findings that cannot

be supported scientifically.
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