Screening Ingredients Most Efficiently with Two-Level Design of
Experiments (DOE)

A DOE on machine-made bread shows how clever application of statistical methods
quickly screens alternative ingredients to see which, if any, impair the desired reaction.
In today’s extremely competitive world it boils down to the “knead for speed” in making

more and more “dough.”

Mark J. Anderson

Two-level factorial designs are ideal for identifying the vital few variables that significantly affect
your process or product, leading to breakthrough improvements (see sidebar for example). If you want to
study 2 or 3 factors, it makes sense to perform all runs in the full two-level design matrix, which consists
of all combinations of each factor at its high and low levels. However, if you set your sights to 4 factors
and beyond, you may need to cut costly runs by doing only a fraction of all possible combinations.

This article details my attempts to tame my home bread-making machine with fractional two-level
design tools. The results at times came out half-baked, but in the end I finally got a rise out of the bread.

The exercise provided much food for thought on the statistical repercussions of DOE methods.

First DOE: Sifting Through Flour and Other Ingredients for Making Bread

Modern bread-making machines make it easy to bake your own bread at home. For years I produced
machine-made bread using pre-mixes, but recently I decided that it would be more economical (and fun)
to buy the ingredients separately and do some baking experiments. I wanted to see if I could save money
by using the regular (and cheaper) varieties of flour and/or yeast, as opposed to those that were
specifically advertised for bread-making machines. Also, according to a recipe I found printed on the
bread-flour package, I could economize by using margarine and water versus butter and milk as fluids. I
assumed that any combination of these ingredients would work, and that none of my family members

would notice. To be sure, I set up a DOE on the four main ingredients (with cheap versus costly choices

coded minus (—) and plus (+), respectively):



Liquid: Water (-) or Milk (+)
Oil: Margarine (—) or Butter (+)
Flour: Regular (-) or Bread (+)
D. Yeast: Regular (—) or Bread (+)
Baking the 16 loaves required for the full factorial would be wasteful, especially if nothing perceptibly
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changed, so I chose a standard half-fraction requiring only 8 runs (see reference 1 for statistical details on
this form of DOE). A design like this works well if nothing comes out significant, or you see only main
effects of the test factors, but you lose resolution on interactions of factors (more on this later!). It boils
down to a trade-off of experimental runs versus information. In this case I thought none of the factors
would be significant so it made sense to choose the lower-resolution half-fraction screening design.

For the first run I added the liquid, oil, flour and yeast at specified levels, as well as salt and sugar
(according to the recipe), and set the machine to bake overnight. The resulting bread looked good, but my
taste panel (three daughters, one exchange student and my wife) did not like it much (average rating of
4.5 on a scale of 1 to 10). This would not do! I needed to adjust the recipe to get in a more desirable
range of taste or face a possible strike by my tasters. I’d endured bad reviews in a previous DOE on
baking a pound cake (1). In that case my family responded much better to mixtures with a maximum
level of sugar, so I upped this ingredient from 2 teaspoons to 2 tablespoons. Then I started over with the
DOE. The reviews sweetened up considerably as you can see from the following table of results (shown

in standard order, but actually performed in randomized run order).

Table 1.
First Breadmaking DOE: Half-Fraction Two-Level Factorial

Std | A:Liquid | B:Oil C:Flour | D:Yeast | Taste Rise
(avg)

la,b | Water Butter Regular | Regular |[4.7,5.5 | 0,0

2a,b | Milk Butter Regular | Bread 65,62 | 1,1

3a,b | Water Margarine | Regular | Bread 50,52 0,0

4 Milk Margarine | Regular | Regular | 5.5 1

5 Water Butter Bread Bread 5.8 1

6 Milk Butter Bread Regular | 5.0 1

7 Water Margarine | Bread Regular | 5.3 1

8 Milk Margarine | Bread Bread 5.2 1




However, I was shocked to discover that in some cases the bread failed to rise (see picture).

Figure 1.
Author Inspects (Half-Baked) Bread

At first I figured that the failure occurred by chance, so I repeated the two runs that failed (standard
numbers 1 and 3) and one that didn’t (#2). I got the same results, bad and good. Now 1 knew that the

problem could be reproduced.

Which of the tested ingredients, if any, caused the yeast to slack off? To get a numerical analysis, 1
entered 1’s for risen bread (“Yes™) and 0’s for the bricks (“No”). Then with the aid of statistical software
for DOE (3), I produced a statistical plot (see Figure 2), called a “half-normal probability plot,” that
revealed abnormally large (and highly significant) effects due to the liquid (A) and the flour (C) and the
interaction of these two factors (AC). Notice how the other effects (unlabeled squares) and estimates of
error (triangles) all fall on a line near the zero-effect level: The y-axis on the half-normal plot is scaled in
a special way to make normally distributed effects line up in this fashion. The effects of A, C and

interaction AC significantly exceeded what would normally be expected due to random variation.



Figure 2.
Half-Normal Plot of Effects Reveals Interaction
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However, things are not as clear-cut as they appear from the plot: Due to the nature of fractional
design, interaction AC is aliased with BE. This is the price you pay by cutting out half the runs. Let’s see

what it means to be aliased.

The Pitfalls of Doing Fractional Two-Level Factorial Design

Take a look at Table 2, which lays out the experimental design in coded levels with all interaction
columns included. The factor coding is simple: minus () for one level versus plus (+) for the other. For
numerical factors such as time or temperature, these codes would be assigned to the low and high levels,
respectively, but in this case the factors are categorical, so assignment of minuses and pluses is arbitrary
(I used cost as the key). The coding for interaction columns is done by multiplying parent terms. For

example, the AC column is computed by multiplying the A by the C column.



Table 2.

First Breadmaking DOE: Design Layout in Coded Levels with Interactions Shown
Std A B C D | AB | AC | AD | BC | BD | CD | ABC | Rise
la,b - - - - + + + + + + - 0,0
2ab + - - + - - + + - - + 1,1
3a,b — + - + - + - - + - + 0,0
4 + + - - + - - — - + - 1
5 - - + + + - - - - + + 1
6 + - + - - + - - + - - |
7 - + + - - - + + - - - 1
8 + + + + + + + * + * + 1

The peculiar thing about this matrix is that A times C equals B times D — these two interactions are
therefore statistically “aliased.” It’s impossible to say which one is really causing the significant effect on
bread-making performance because they change back and forth from one level to the other in exactly the
same pattern (see italicized columns in the table). Upon closer inspection, you’ll notice that all of the two
factor interactions are aliased: AB = CD and AD = BC. It also turns out that all main effects get aliased
with a three-factor interaction (for example: A = BCD, not shown in the table above, but easily computed
by multiplying BxCxD), but it’s a generally acceptable practice to ignore interactions of three or more

factors, because they’re so unlikely. Statisticians characterize this level of aliasing as “resolution IV.”

To help you grasp the concept of resolution, think of main effects as 1 factor and add this to the
number of interacting factors it will be aliased with. Resolution IV indicates a 1-to-3 (example: A=BCD)
and 2-to-2 aliasing (AB=CD, etc.), both of which add to 4 (2+2 and 1+3, respectively). It’s possible to
create resolution III designs, for example by testing 7 factors in only 8 runs. Then you’d alias main
effects with two-factor interactions (1+2=3), which wouldn’t be good. If you can afford more runs,
choose a design with at least a resolution V, such as 5 factors in 16 runs. Then main effects get aliased
only with extremely unlikely interactions of four-factors (1+4=5) and two-factor interactions are
confused only with three-factor interactions (2+3=5). However, a resolution IV design often offers a

reasonable compromise for screening purposes, which is what I needed for my bread-making

experiments.

In this case the only alias of concern was AC=BD, but since neither of the parents (B and D) of the

BD interaction came out statistically significant, and these factors (oil and yeast) seemed unlikely to




interact, I was tempted to take a leap of faith and place my bets on the AC interaction (Figure 3, shown

below, with triangles representing bread flour and squares symbolizing the regular flour).

Figure 3.
Interaction of Liquid (A) with Flour (C) Shows Apparent Problem with Rising
1 4 s
C+ (Bread)
@ C: Flour
- _
!
0 — ¥C-(Regular)
i ]
Water Milk
A: Liquid i

The combination of water and regular flour appeared to create problems with the bread-maker (zero
rise at these conditions), but not being a gambling man, I felt it would be best to perform follow-up runs
to separate this interaction effect (AC) from its alias BD. To resolve this problem, I made use of a nifty
DOE method called a “semifold”, which requires adding only half the runs of the original design (4).
This technique was developed specifically to improve resolution of two-level fractional factorial designs,

such as that used for bread-making, with aliased two-factor interactions (2fi’s).

Semifolding the Bread DOE to Resolve Aliased Interactions

Before getting into the details of semifoldover, let’s go back a step and talk about full foldover — an
established method for enhancing resolution III designs. It’s very simple to perform: Just repeat the
original experiment with all factors at opposite levels. For example, see Table 3, which shows the layout
for a highly-fractionated two-level design on in-line skates (4). Notice that the second block of runs goes

opposite the first on all levels.



Table 3.
Full Foldover on Experiment with In-line Skates
Std | Block | A: | B: C: D: E: F: G: Time
Pad | Bearing | Gloves | Helmet | Wheels | Covers | Neon | (sec.)
1] 1 Out | OId On Front Soft Off Off [ 195
21 1 In | OId On Back Hard Off On | 192
3] 1 Out | New On Back Soft On On | 200
41 1 In | New On Front | Hard On Off | 165
51 1 Out | Old Off Front | Hard On On | 190
6 1 In | Old Off Back Soft On Off | 195
71 1 Out | New Off Back Hard Off Off | 166
81 1 In | New Off Front Soft Off On | 201
91 2 In | New Off Back Hard On On |175
101 2 Out | New Off Front Soft On Off |211
11| 2 In | OId Off Front | Hard Off Off |202
12| 2 Out | Old Off Back Soft | Off On {205
131 2 In | New On Back Soft | Off Ooff |212
14| 2 Out | New On Front | Hard Off On [175
15 2 In | Old On Front Soft On On |204
16 2 Out [ Old On Back Hard On Off | 201

Foldovers like this work nicely to improve resolution III designs. However, for resolution IV designs

we recommend something a bit different, called a “semifold,” which requires that you:

1. Lay out a single-factor foldover from the original design. (Suggestion: choose a factor that’s
involved in the largest significant two-factor interaction that’s aliased with other 2fi(s).)
2. Perform only half of the foldover runs by selecting those where the chosen factor is either at its
low level or high level, whichever you believe will generate the most desirable response(s).
Table 4 shows how I applied a semifold to my bread-making DOE. To de-alias the AC interaction, I
chose factor C (flour) as the single column I folded over (notice how levels go opposite from the original

block of runs shown in Table 1). Then I performed only half the laid-out runs— the ones with regular

flour (because I am cheap!).




Table 4.

Semifold on Bread-making Experiment {(second block only)

Std | A:Liquid | B:Oil | C:Flour | D:Yeast | Taste | Rise

9 | Water Butter | Bread Reg

10 { Milk Butter | Bread Bread

11 | Water Marg | Bread Bread

12 | Milk Marg | Bread Reg

13 | Water Butter | Reg Bread 5.0 0
14 | Milk Butter | Reg Reg 6.5 1

15 | Water Marg | Reg Reg 55 0
16 | Milk Marg | Reg Bread 55 1

Now it could be seen that the combination of water and regular flour caused the bread-making to fail
(zero rise). As shown in Table 5, this finding is unequivocal because the semifold of four runs de-aliased
the interaction of factors A and C from that of B and D. As you can see in the underlined, italicized

columns, the patterns no longer match.

Table §.
Second Bread-making DOE: Design Layout in Coded Levels with Interactions Shown

Std{ A| B | C | D |AB| AC | AD [ BC | BD | CD | Rise
1B |- - -]+ +i+]-|+]-1- 0
14 + |l -1 -1 -{-=-1-=-1-1+1+1+ il
15 - + - - - + + - - + 0
16 + + | - + + - + - + - |

Therefore, I concluded that the interaction of factors A and C, depicted in Figure 2, accurately
described what affected the bread-making process. I must avoid the combination of regular flour and
water. That’s not a problem, because with a family like mine, there’s always milk in the refrigerator, so I
just use it instead of water and the bread always rises. I use margarine and regular yeast with the regular
flour to hold keep ingredient costs to a minimum. Unfortunately, due to the unexpected failures in getting
my bread to rise, I lost sight of my original objective: Improve taste. The statistical analysis does show a
tendency to prefer the same conditions that resulted in risen breads. However, some of my children
actually rated the failed breads higher, which created ambiguity in the findings. They must like the gooey
mouth-feel of dough (Yuk!). My follow-up studies will likely involve not only what ingredients to use,



but also how much of each. Stay tuned for further revelations on the mysteries of making tasty product

from bread-making machines!

Lessons Learned

Let’s go back over this series of bread-making experiments and see what can be learned from the
experience. Despite all the complications in this case, I would not hesitate to choose a resolution IV
design for screening purposes, because they allow you to study many factors in few runs. For example,
you can study up to 8 factors in only 16 runs and still get resolution IV. Good DOE software (3) lays out
a full array of designs of varying resolution for many more factors (if you can handle them) and many
more runs (if you can afford them). What you do as a result of running a resolution IV screening design
depends on which, if any, effects come out significant. Here’s a general strategy for follow-up:

= Scenario 1 - Nothing significant: Look for other factors that affect your response(s).
= Scenario 2 - Only main effects significant: Change these factors to their best levels.
s Scenario 3 -Two-factor interaction(s) significant: De-alias by performing a semifold.
By following this strategy you will increase your odds of uncovering breakthrough main effects and

interactions at a relatively minimal cost in experimental runs. This is an ideal situation - akin to baking

your bread and eating it too.
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Sidebar: Knead for Speed in Making Herbicide (Extracted from o Case Study by David Long, Aventis CropScience)

Aventis CropScience (Research Triangle Park, NC) recently introduced an herbicide formulated
specifically for the Brazilian corn and sugar cane markets. However, after successful pilot tests they
encountered problems in the field due to clogging in the applicators. On of their principal scientists,
David A. Long, set up a two-level factorial design to investigate how various factors affected the
dispersion of the solid herbicidal material into the aqueous medium. To set up and analyze the
experiment, he made use of a DOE software package called Design-Expert® (Stat-Ease, Inc.,
Minneapolis, MN, 1.612.378.9449, www.statease.com).

The Aventis herbicide is prepared in a process that’s similar to making pasta. A powdered form of the
herbicide is first mixed with a small amount of water. Then it’s kneaded to a dough-like substance and
extruded through fine holes. The herbicide is then dried on a vibrating fluidized bed dryer and packaged
as small granules measuring 0.8 mm in diameter by 2 to 3 mm in length. David and his project team
selected four factors they thought might cause the herbicide to clog in the Brazilian field applicators:

A. Dispersant level

B. Particle size before extrusion
C. Amount of water

D. Extrusion rate.

With the aid of Design-Expert, David set up a design with two levels of each factor and laid out a

randomized run plan for their pilot-scale equipment. The screen shot shows Design-Expert’s two-level

factorial design builder. It exhibits color-coding, similar to a stoplight, that clue users in on safe

(green) versus cautious (yellow) versus risky (red) design options. Clicking a box initiates a sequence

of steps leading to a “recipe” sheet in randomized run order. The arrow points to the full design on 4

factors (requires 16 runs) — a safe choice for the type of problem faced at Aventis.
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Statistical analysis from the pilot trials revealed a number of significant effects on dispersion. Armed
with this information, David and his team set up confirmation runs on a larger facility at what they
thought would be ideal extrusion settings. However, they encountered unacceptably high temperatures.
Perhaps due to friction caused by particles passing through the extrusion holes. The team of scientists
then looked for what differed from pilot plant to full-scale equipment and pinpointed the kneading
operation as the likely culprit. After increasing the kneader speed and residence time, the temperature
problems disappeared. Aventis then proceeded with their production run and shipped the herbicide to
Brazil. It was applied successfully, with no further complaints about clogging in the applicators.

In this case the factorial DOE approach proved to be absolutely essential for determining which
factors influenced critical product properties, particularly given the time pressures (the herbicide had to
be applied during the Brazilian growing season). Traditional one-factor-at-a-time (OFAT) experiments
would not only have taken too long, they would never have revealed powerful interactions of factors,
which often prove to be the key to success. Aventis might’ve lost millions of dollars in foregone sales
and disposal costs for unusable product. They would have also lost valuable goodwill and incurred more
expense developing a replacement product. David says in conclusion: “We certainly learned more about

our product using DOE and Design-Expert than we would have using other methods.”





